MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmetval Structured version   Visualization version   GIF version

Theorem stdbdmetval 23121
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmetval ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem stdbdmetval
StepHypRef Expression
1 ovex 7168 . . . 4 (𝐴𝐶𝐵) ∈ V
2 ifexg 4472 . . . 4 (((𝐴𝐶𝐵) ∈ V ∧ 𝑅𝑉) → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
31, 2mpan 689 . . 3 (𝑅𝑉 → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
4 oveq12 7144 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐶𝑦) = (𝐴𝐶𝐵))
54breq1d 5040 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦) ≤ 𝑅 ↔ (𝐴𝐶𝐵) ≤ 𝑅))
65, 4ifbieq1d 4448 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
7 stdbdmet.1 . . . 4 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
86, 7ovmpoga 7283 . . 3 ((𝐴𝑋𝐵𝑋 ∧ if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
93, 8syl3an3 1162 . 2 ((𝐴𝑋𝐵𝑋𝑅𝑉) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
1093comr 1122 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  ifcif 4425   class class class wbr 5030  (class class class)co 7135  cmpo 7137  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140
This theorem is referenced by:  stdbdbl  23124
  Copyright terms: Public domain W3C validator