MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmetval Structured version   Visualization version   GIF version

Theorem stdbdmetval 24397
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmetval ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem stdbdmetval
StepHypRef Expression
1 ovex 7447 . . . 4 (𝐴𝐶𝐵) ∈ V
2 ifexg 4573 . . . 4 (((𝐴𝐶𝐵) ∈ V ∧ 𝑅𝑉) → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
31, 2mpan 689 . . 3 (𝑅𝑉 → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
4 oveq12 7423 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐶𝑦) = (𝐴𝐶𝐵))
54breq1d 5152 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦) ≤ 𝑅 ↔ (𝐴𝐶𝐵) ≤ 𝑅))
65, 4ifbieq1d 4548 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
7 stdbdmet.1 . . . 4 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
86, 7ovmpoga 7567 . . 3 ((𝐴𝑋𝐵𝑋 ∧ if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
93, 8syl3an3 1163 . 2 ((𝐴𝑋𝐵𝑋𝑅𝑉) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
1093comr 1123 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3469  ifcif 4524   class class class wbr 5142  (class class class)co 7414  cmpo 7416  cle 11265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419
This theorem is referenced by:  stdbdbl  24400
  Copyright terms: Public domain W3C validator