Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlkwlk Structured version   Visualization version   GIF version

Theorem upwlkwlk 47071
Description: A simple walk is a walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 27-Feb-2021.)
Assertion
Ref Expression
upwlkwlk (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)

Proof of Theorem upwlkwlk
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 eqid 2726 . . 3 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
31, 2upwlkbprop 47070 . 2 (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
4 idd 24 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) β†’ 𝐹 ∈ Word dom (iEdgβ€˜πΊ)))
5 idd 24 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)))
6 ifpprsnss 4763 . . . . . 6 (((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} β†’ if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))
76a1i 11 . . . . 5 (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ (((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} β†’ if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))))
87ralimdva 3161 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} β†’ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))))
94, 5, 83anim123d 1439 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))))
101, 2isupwlk 47068 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
111, 2iswlk 29371 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))))
129, 10, 113imtr4d 294 . 2 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃))
133, 12mpcom 38 1 (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395  if-wif 1059   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  Vcvv 3468   βŠ† wss 3943  {csn 4623  {cpr 4625   class class class wbr 5141  dom cdm 5669  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  0cc0 11109  1c1 11110   + caddc 11112  ...cfz 13487  ..^cfzo 13630  β™―chash 14292  Word cword 14467  Vtxcvtx 28759  iEdgciedg 28760  Walkscwlks 29357  UPWalkscupwlks 47065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14293  df-word 14468  df-wlks 29360  df-upwlks 47066
This theorem is referenced by:  upgrwlkupwlkb  47073
  Copyright terms: Public domain W3C validator