![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupth2lem3lem7 | Structured version Visualization version GIF version |
Description: Lemma for eupth2lem3 30281: Combining trlsegvdeg 30272, eupth2lem3lem3 30275, eupth2lem3lem4 30276 and eupth2lem3lem6 30278. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 27-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
eupth2lem3.o | ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
eupth2lem3.e | ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
Ref | Expression |
---|---|
eupth2lem3lem7 | ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | trlsegvdeg.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | trlsegvdeg.f | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
4 | trlsegvdeg.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
5 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
6 | trlsegvdeg.w | . . . . 5 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
7 | trlsegvdeg.vx | . . . . 5 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
8 | trlsegvdeg.vy | . . . . 5 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
9 | trlsegvdeg.vz | . . . . 5 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
10 | trlsegvdeg.ix | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
11 | trlsegvdeg.iy | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
12 | trlsegvdeg.iz | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | trlsegvdeg 30272 | . . . 4 ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
14 | 13 | breq2d 5163 | . . 3 ⊢ (𝜑 → (2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))) |
15 | 14 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))) |
16 | eupth2lem3.o | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) | |
17 | eupth2lem3.e | . . . . 5 ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) | |
18 | ifpprsnss 4772 | . . . . 5 ⊢ ((𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19 | eupth2lem3lem3 30275 | . . 3 ⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17 | eupth2lem3lem5 30277 | . . . . . . 7 ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) ∈ 𝒫 𝑉) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19, 21 | eupth2lem3lem4 30276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
23 | 22 | 3expa 1119 | . . . . 5 ⊢ (((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
24 | 23 | expcom 413 | . . . 4 ⊢ ((𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))) |
25 | neanior 3035 | . . . . 5 ⊢ ((𝑈 ≠ (𝑃‘𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) ↔ ¬ (𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17 | eupth2lem3lem6 30278 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃‘𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
27 | 26 | 3expa 1119 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑈 ≠ (𝑃‘𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
28 | 27 | expcom 413 | . . . . 5 ⊢ ((𝑈 ≠ (𝑃‘𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))) |
29 | 25, 28 | sylbir 235 | . . . 4 ⊢ (¬ (𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))) |
30 | 24, 29 | pm2.61i 182 | . . 3 ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
31 | 20, 30 | pm2.61dane 3029 | . 2 ⊢ (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
32 | 15, 31 | bitrd 279 | 1 ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ⊆ wss 3966 ∅c0 4342 ifcif 4534 {csn 4634 {cpr 4636 〈cop 4640 class class class wbr 5151 ↾ cres 5695 “ cima 5696 Fun wfun 6563 ‘cfv 6569 (class class class)co 7438 0cc0 11162 1c1 11163 + caddc 11165 2c2 12328 ...cfz 13553 ..^cfzo 13700 ♯chash 14375 ∥ cdvds 16296 Vtxcvtx 29039 iEdgciedg 29040 VtxDegcvtxdg 29509 Trailsctrls 29734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-xnn0 12607 df-z 12621 df-uz 12886 df-rp 13042 df-xadd 13162 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-word 14559 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-dvds 16297 df-edg 29091 df-uhgr 29101 df-ushgr 29102 df-uspgr 29193 df-vtxdg 29510 df-wlks 29643 df-trls 29736 |
This theorem is referenced by: eupth2lem3 30281 |
Copyright terms: Public domain | W3C validator |