MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem7 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem7 27758
Description: Lemma for eupth2lem3 27760: Combining trlsegvdeg 27751, eupth2lem3lem3 27754, eupth2lem3lem4 27755 and eupth2lem3lem6 27757. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 27-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3.e (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
Assertion
Ref Expression
eupth2lem3lem7 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem7
StepHypRef Expression
1 trlsegvdeg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 trlsegvdeg.i . . . . 5 𝐼 = (iEdg‘𝐺)
3 trlsegvdeg.f . . . . 5 (𝜑 → Fun 𝐼)
4 trlsegvdeg.n . . . . 5 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
5 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
6 trlsegvdeg.w . . . . 5 (𝜑𝐹(Trails‘𝐺)𝑃)
7 trlsegvdeg.vx . . . . 5 (𝜑 → (Vtx‘𝑋) = 𝑉)
8 trlsegvdeg.vy . . . . 5 (𝜑 → (Vtx‘𝑌) = 𝑉)
9 trlsegvdeg.vz . . . . 5 (𝜑 → (Vtx‘𝑍) = 𝑉)
10 trlsegvdeg.ix . . . . 5 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 trlsegvdeg.iy . . . . 5 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
12 trlsegvdeg.iz . . . . 5 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12trlsegvdeg 27751 . . . 4 (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))
1413breq2d 4935 . . 3 (𝜑 → (2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
1514notbid 310 . 2 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
16 eupth2lem3.o . . . 4 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
17 eupth2lem3.e . . . . 5 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
18 ifpprsnss 4568 . . . . 5 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
1917, 18syl 17 . . . 4 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19eupth2lem3lem3 27754 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17eupth2lem3lem5 27756 . . . . . . 7 (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19, 21eupth2lem3lem4 27755 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
23223expa 1098 . . . . 5 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
2423expcom 406 . . . 4 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
25 neanior 3054 . . . . 5 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) ↔ ¬ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17eupth2lem3lem6 27757 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
27263expa 1098 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
2827expcom 406 . . . . 5 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
2925, 28sylbir 227 . . . 4 (¬ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
3024, 29pm2.61i 177 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
3120, 30pm2.61dane 3049 . 2 (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
3215, 31bitrd 271 1 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  if-wif 1043   = wceq 1507  wcel 2050  wne 2961  {crab 3086  wss 3823  c0 4172  ifcif 4344  {csn 4435  {cpr 4437  cop 4441   class class class wbr 4923  cres 5403  cima 5404  Fun wfun 6176  cfv 6182  (class class class)co 6970  0cc0 10329  1c1 10330   + caddc 10332  2c2 11489  ...cfz 12702  ..^cfzo 12843  chash 13499  cdvds 15461  Vtxcvtx 26478  iEdgciedg 26479  VtxDegcvtxdg 26944  Trailsctrls 27172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ifp 1044  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-inf 8696  df-dju 9118  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-n0 11702  df-xnn0 11774  df-z 11788  df-uz 12053  df-rp 12199  df-xadd 12319  df-fz 12703  df-fzo 12844  df-seq 13179  df-exp 13239  df-hash 13500  df-word 13667  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-dvds 15462  df-edg 26530  df-uhgr 26540  df-ushgr 26541  df-uspgr 26632  df-vtxdg 26945  df-wlks 27078  df-trls 27174
This theorem is referenced by:  eupth2lem3  27760
  Copyright terms: Public domain W3C validator