Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliinclf Structured version   Visualization version   GIF version

Theorem saliinclf 45981
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
saliinclf.1 𝑘𝜑
saliinclf.2 𝑘𝑆
saliinclf.3 𝑘𝐾
saliinclf.4 (𝜑𝑆 ∈ SAlg)
saliinclf.5 (𝜑𝐾 ≼ ω)
saliinclf.6 (𝜑𝐾 ≠ ∅)
saliinclf.7 ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliinclf (𝜑 𝑘𝐾 𝐸𝑆)

Proof of Theorem saliinclf
StepHypRef Expression
1 saliinclf.1 . . . 4 𝑘𝜑
2 incom 4200 . . . . 5 (𝐸 𝑆) = ( 𝑆𝐸)
3 saliinclf.7 . . . . . . 7 ((𝜑𝑘𝐾) → 𝐸𝑆)
4 elssuni 4938 . . . . . . 7 (𝐸𝑆𝐸 𝑆)
53, 4syl 17 . . . . . 6 ((𝜑𝑘𝐾) → 𝐸 𝑆)
6 dfss2 3965 . . . . . 6 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
75, 6sylib 217 . . . . 5 ((𝜑𝑘𝐾) → (𝐸 𝑆) = 𝐸)
8 dfin4 4267 . . . . . 6 ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸))
98a1i 11 . . . . 5 ((𝜑𝑘𝐾) → ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸)))
102, 7, 93eqtr3a 2790 . . . 4 ((𝜑𝑘𝐾) → 𝐸 = ( 𝑆 ∖ ( 𝑆𝐸)))
111, 10iineq2d 5017 . . 3 (𝜑 𝑘𝐾 𝐸 = 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)))
12 saliinclf.6 . . . 4 (𝜑𝐾 ≠ ∅)
13 saliinclf.3 . . . . 5 𝑘𝐾
14 saliinclf.2 . . . . . 6 𝑘𝑆
1514nfuni 4913 . . . . 5 𝑘 𝑆
1613, 15iindif2f 44799 . . . 4 (𝐾 ≠ ∅ → 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1712, 16syl 17 . . 3 (𝜑 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1811, 17eqtrd 2766 . 2 (𝜑 𝑘𝐾 𝐸 = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
19 saliinclf.4 . . 3 (𝜑𝑆 ∈ SAlg)
20 saliinclf.5 . . . 4 (𝜑𝐾 ≼ ω)
21 saldifcl 45974 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
2219, 3, 21syl2an2r 683 . . . 4 ((𝜑𝑘𝐾) → ( 𝑆𝐸) ∈ 𝑆)
231, 14, 13, 19, 20, 22saliunclf 45977 . . 3 (𝜑 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆)
24 saldifcl 45974 . . 3 ((𝑆 ∈ SAlg ∧ 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆) → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2519, 23, 24syl2anc 582 . 2 (𝜑 → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2618, 25eqeltrd 2826 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wnfc 2876  wne 2930  cdif 3944  cin 3946  wss 3947  c0 4323   cuni 4906   ciun 4994   ciin 4995   class class class wbr 5144  ωcom 7866  cdom 8962  SAlgcsalg 45963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-card 9973  df-acn 9976  df-salg 45964
This theorem is referenced by:  saliincl  45982  smfsupdmmbllem  46499  smfinfdmmbllem  46503
  Copyright terms: Public domain W3C validator