Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliinclf Structured version   Visualization version   GIF version

Theorem saliinclf 45340
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
saliinclf.1 𝑘𝜑
saliinclf.2 𝑘𝑆
saliinclf.3 𝑘𝐾
saliinclf.4 (𝜑𝑆 ∈ SAlg)
saliinclf.5 (𝜑𝐾 ≼ ω)
saliinclf.6 (𝜑𝐾 ≠ ∅)
saliinclf.7 ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliinclf (𝜑 𝑘𝐾 𝐸𝑆)

Proof of Theorem saliinclf
StepHypRef Expression
1 saliinclf.1 . . . 4 𝑘𝜑
2 incom 4200 . . . . 5 (𝐸 𝑆) = ( 𝑆𝐸)
3 saliinclf.7 . . . . . . 7 ((𝜑𝑘𝐾) → 𝐸𝑆)
4 elssuni 4940 . . . . . . 7 (𝐸𝑆𝐸 𝑆)
53, 4syl 17 . . . . . 6 ((𝜑𝑘𝐾) → 𝐸 𝑆)
6 df-ss 3964 . . . . . 6 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
75, 6sylib 217 . . . . 5 ((𝜑𝑘𝐾) → (𝐸 𝑆) = 𝐸)
8 dfin4 4266 . . . . . 6 ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸))
98a1i 11 . . . . 5 ((𝜑𝑘𝐾) → ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸)))
102, 7, 93eqtr3a 2794 . . . 4 ((𝜑𝑘𝐾) → 𝐸 = ( 𝑆 ∖ ( 𝑆𝐸)))
111, 10iineq2d 5019 . . 3 (𝜑 𝑘𝐾 𝐸 = 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)))
12 saliinclf.6 . . . 4 (𝜑𝐾 ≠ ∅)
13 saliinclf.3 . . . . 5 𝑘𝐾
14 saliinclf.2 . . . . . 6 𝑘𝑆
1514nfuni 4914 . . . . 5 𝑘 𝑆
1613, 15iindif2f 44155 . . . 4 (𝐾 ≠ ∅ → 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1712, 16syl 17 . . 3 (𝜑 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1811, 17eqtrd 2770 . 2 (𝜑 𝑘𝐾 𝐸 = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
19 saliinclf.4 . . 3 (𝜑𝑆 ∈ SAlg)
20 saliinclf.5 . . . 4 (𝜑𝐾 ≼ ω)
21 saldifcl 45333 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
2219, 3, 21syl2an2r 681 . . . 4 ((𝜑𝑘𝐾) → ( 𝑆𝐸) ∈ 𝑆)
231, 14, 13, 19, 20, 22saliunclf 45336 . . 3 (𝜑 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆)
24 saldifcl 45333 . . 3 ((𝑆 ∈ SAlg ∧ 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆) → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2519, 23, 24syl2anc 582 . 2 (𝜑 → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2618, 25eqeltrd 2831 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wnf 1783  wcel 2104  wnfc 2881  wne 2938  cdif 3944  cin 3946  wss 3947  c0 4321   cuni 4907   ciun 4996   ciin 4997   class class class wbr 5147  ωcom 7857  cdom 8939  SAlgcsalg 45322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-card 9936  df-acn 9939  df-salg 45323
This theorem is referenced by:  saliincl  45341  smfsupdmmbllem  45858  smfinfdmmbllem  45862
  Copyright terms: Public domain W3C validator