![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliinclf | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
saliinclf.1 | ⊢ Ⅎ𝑘𝜑 |
saliinclf.2 | ⊢ Ⅎ𝑘𝑆 |
saliinclf.3 | ⊢ Ⅎ𝑘𝐾 |
saliinclf.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliinclf.5 | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliinclf.6 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
saliinclf.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliinclf | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliinclf.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
2 | incom 4230 | . . . . 5 ⊢ (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸) | |
3 | saliinclf.7 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
4 | elssuni 4961 | . . . . . . 7 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ⊆ ∪ 𝑆) |
6 | dfss2 3994 | . . . . . 6 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
7 | 5, 6 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
8 | dfin4 4297 | . . . . . 6 ⊢ (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
10 | 2, 7, 9 | 3eqtr3a 2804 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
11 | 1, 10 | iineq2d 5038 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
12 | saliinclf.6 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
13 | saliinclf.3 | . . . . 5 ⊢ Ⅎ𝑘𝐾 | |
14 | saliinclf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 | |
15 | 14 | nfuni 4938 | . . . . 5 ⊢ Ⅎ𝑘∪ 𝑆 |
16 | 13, 15 | iindif2f 45065 | . . . 4 ⊢ (𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
17 | 12, 16 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
18 | 11, 17 | eqtrd 2780 | . 2 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
19 | saliinclf.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
20 | saliinclf.5 | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
21 | saldifcl 46240 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
22 | 19, 3, 21 | syl2an2r 684 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
23 | 1, 14, 13, 19, 20, 22 | saliunclf 46243 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
24 | saldifcl 46240 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) | |
25 | 19, 23, 24 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) |
26 | 18, 25 | eqeltrd 2844 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ∪ ciun 5015 ∩ ciin 5016 class class class wbr 5166 ωcom 7903 ≼ cdom 9001 SAlgcsalg 46229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-card 10008 df-acn 10011 df-salg 46230 |
This theorem is referenced by: saliincl 46248 smfsupdmmbllem 46765 smfinfdmmbllem 46769 |
Copyright terms: Public domain | W3C validator |