Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliinclf Structured version   Visualization version   GIF version

Theorem saliinclf 46355
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
saliinclf.1 𝑘𝜑
saliinclf.2 𝑘𝑆
saliinclf.3 𝑘𝐾
saliinclf.4 (𝜑𝑆 ∈ SAlg)
saliinclf.5 (𝜑𝐾 ≼ ω)
saliinclf.6 (𝜑𝐾 ≠ ∅)
saliinclf.7 ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliinclf (𝜑 𝑘𝐾 𝐸𝑆)

Proof of Theorem saliinclf
StepHypRef Expression
1 saliinclf.1 . . . 4 𝑘𝜑
2 incom 4184 . . . . 5 (𝐸 𝑆) = ( 𝑆𝐸)
3 saliinclf.7 . . . . . . 7 ((𝜑𝑘𝐾) → 𝐸𝑆)
4 elssuni 4913 . . . . . . 7 (𝐸𝑆𝐸 𝑆)
53, 4syl 17 . . . . . 6 ((𝜑𝑘𝐾) → 𝐸 𝑆)
6 dfss2 3944 . . . . . 6 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
75, 6sylib 218 . . . . 5 ((𝜑𝑘𝐾) → (𝐸 𝑆) = 𝐸)
8 dfin4 4253 . . . . . 6 ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸))
98a1i 11 . . . . 5 ((𝜑𝑘𝐾) → ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸)))
102, 7, 93eqtr3a 2794 . . . 4 ((𝜑𝑘𝐾) → 𝐸 = ( 𝑆 ∖ ( 𝑆𝐸)))
111, 10iineq2d 4991 . . 3 (𝜑 𝑘𝐾 𝐸 = 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)))
12 saliinclf.6 . . . 4 (𝜑𝐾 ≠ ∅)
13 saliinclf.3 . . . . 5 𝑘𝐾
14 saliinclf.2 . . . . . 6 𝑘𝑆
1514nfuni 4890 . . . . 5 𝑘 𝑆
1613, 15iindif2f 45184 . . . 4 (𝐾 ≠ ∅ → 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1712, 16syl 17 . . 3 (𝜑 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1811, 17eqtrd 2770 . 2 (𝜑 𝑘𝐾 𝐸 = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
19 saliinclf.4 . . 3 (𝜑𝑆 ∈ SAlg)
20 saliinclf.5 . . . 4 (𝜑𝐾 ≼ ω)
21 saldifcl 46348 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
2219, 3, 21syl2an2r 685 . . . 4 ((𝜑𝑘𝐾) → ( 𝑆𝐸) ∈ 𝑆)
231, 14, 13, 19, 20, 22saliunclf 46351 . . 3 (𝜑 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆)
24 saldifcl 46348 . . 3 ((𝑆 ∈ SAlg ∧ 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆) → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2519, 23, 24syl2anc 584 . 2 (𝜑 → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2618, 25eqeltrd 2834 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2883  wne 2932  cdif 3923  cin 3925  wss 3926  c0 4308   cuni 4883   ciun 4967   ciin 4968   class class class wbr 5119  ωcom 7861  cdom 8957  SAlgcsalg 46337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-card 9953  df-acn 9956  df-salg 46338
This theorem is referenced by:  saliincl  46356  smfsupdmmbllem  46873  smfinfdmmbllem  46877
  Copyright terms: Public domain W3C validator