| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saliinclf | Structured version Visualization version GIF version | ||
| Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| saliinclf.1 | ⊢ Ⅎ𝑘𝜑 |
| saliinclf.2 | ⊢ Ⅎ𝑘𝑆 |
| saliinclf.3 | ⊢ Ⅎ𝑘𝐾 |
| saliinclf.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saliinclf.5 | ⊢ (𝜑 → 𝐾 ≼ ω) |
| saliinclf.6 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
| saliinclf.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saliinclf | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | saliinclf.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | incom 4184 | . . . . 5 ⊢ (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸) | |
| 3 | saliinclf.7 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
| 4 | elssuni 4913 | . . . . . . 7 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ⊆ ∪ 𝑆) |
| 6 | dfss2 3944 | . . . . . 6 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
| 8 | dfin4 4253 | . . . . . 6 ⊢ (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
| 10 | 2, 7, 9 | 3eqtr3a 2794 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
| 11 | 1, 10 | iineq2d 4991 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
| 12 | saliinclf.6 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
| 13 | saliinclf.3 | . . . . 5 ⊢ Ⅎ𝑘𝐾 | |
| 14 | saliinclf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝑆 | |
| 15 | 14 | nfuni 4890 | . . . . 5 ⊢ Ⅎ𝑘∪ 𝑆 |
| 16 | 13, 15 | iindif2f 45184 | . . . 4 ⊢ (𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
| 17 | 12, 16 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
| 18 | 11, 17 | eqtrd 2770 | . 2 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
| 19 | saliinclf.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 20 | saliinclf.5 | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
| 21 | saldifcl 46348 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
| 22 | 19, 3, 21 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| 23 | 1, 14, 13, 19, 20, 22 | saliunclf 46351 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| 24 | saldifcl 46348 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) | |
| 25 | 19, 23, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) |
| 26 | 18, 25 | eqeltrd 2834 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 ≠ wne 2932 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ∪ ciun 4967 ∩ ciin 4968 class class class wbr 5119 ωcom 7861 ≼ cdom 8957 SAlgcsalg 46337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-card 9953 df-acn 9956 df-salg 46338 |
| This theorem is referenced by: saliincl 46356 smfsupdmmbllem 46873 smfinfdmmbllem 46877 |
| Copyright terms: Public domain | W3C validator |