Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineqconst2 Structured version   Visualization version   GIF version

Theorem iineqconst2 48934
Description: Indexed intersection of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.)
Assertion
Ref Expression
iineqconst2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iineqconst2
StepHypRef Expression
1 r19.2z 4442 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → ∃𝑥𝐴 𝐵 = 𝐶)
2 eqimss 3988 . . . 4 (𝐵 = 𝐶𝐵𝐶)
32reximi 3070 . . 3 (∃𝑥𝐴 𝐵 = 𝐶 → ∃𝑥𝐴 𝐵𝐶)
4 iinss 5003 . . 3 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
51, 3, 43syl 18 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵𝐶)
6 eqimss2 3989 . . . . 5 (𝐵 = 𝐶𝐶𝐵)
76ralimi 3069 . . . 4 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐶𝐵)
87adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → ∀𝑥𝐴 𝐶𝐵)
9 ssiin 5002 . . 3 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
108, 9sylibr 234 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝐶 𝑥𝐴 𝐵)
115, 10eqssd 3947 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wne 2928  wral 3047  wrex 3056  wss 3897  c0 4280   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281  df-iin 4942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator