| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iineqconst2 | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| iineqconst2 | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4460 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 = 𝐶) | |
| 2 | eqimss 4007 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
| 3 | 2 | reximi 3068 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 4 | iinss 5022 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 6 | eqimss2 4008 | . . . . 5 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
| 7 | 6 | ralimi 3067 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 9 | ssiin 5021 | . . 3 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) | |
| 10 | 8, 9 | sylibr 234 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
| 11 | 5, 10 | eqssd 3966 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3916 ∅c0 4298 ∩ ciin 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 df-iin 4960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |