Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseldd | Structured version Visualization version GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseldd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
sseldd | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseldd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | sseld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | sseld 3916 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |