Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-rightdistd Structured version   Visualization version   GIF version

Theorem int-rightdistd 44287
Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-rightdistd.1 (𝜑𝐵 ∈ ℝ)
int-rightdistd.2 (𝜑𝐶 ∈ ℝ)
int-rightdistd.3 (𝜑𝐷 ∈ ℝ)
int-rightdistd.4 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-rightdistd (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))

Proof of Theorem int-rightdistd
StepHypRef Expression
1 int-rightdistd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
21recnd 11150 . . 3 (𝜑𝐵 ∈ ℂ)
3 int-rightdistd.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
43recnd 11150 . . . 4 (𝜑𝐶 ∈ ℂ)
5 int-rightdistd.3 . . . . 5 (𝜑𝐷 ∈ ℝ)
65recnd 11150 . . . 4 (𝜑𝐷 ∈ ℂ)
74, 6addcld 11141 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
82, 7mulcomd 11143 . 2 (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · 𝐵))
94, 2mulcomd 11143 . . . . 5 (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶))
10 int-rightdistd.4 . . . . . . 7 (𝜑𝐴 = 𝐵)
1110eqcomd 2739 . . . . . 6 (𝜑𝐵 = 𝐴)
1211oveq1d 7370 . . . . 5 (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶))
139, 12eqtrd 2768 . . . 4 (𝜑 → (𝐶 · 𝐵) = (𝐴 · 𝐶))
146, 2mulcomd 11143 . . . . 5 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
1511oveq1d 7370 . . . . 5 (𝜑 → (𝐵 · 𝐷) = (𝐴 · 𝐷))
1614, 15eqtrd 2768 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐴 · 𝐷))
1713, 16oveq12d 7373 . . 3 (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
184, 2, 6, 17joinlmuladdmuld 11149 . 2 (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
198, 18eqtrd 2768 1 (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  (class class class)co 7355  cr 11015   + caddc 11019   · cmul 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-resscn 11073  ax-addcl 11076  ax-mulcom 11080  ax-distr 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator