Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-rightdistd | Structured version Visualization version GIF version |
Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-rightdistd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
int-rightdistd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-rightdistd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
int-rightdistd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-rightdistd | ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-rightdistd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
3 | int-rightdistd.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | recnd 11003 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
5 | int-rightdistd.3 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
6 | 5 | recnd 11003 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
7 | 4, 6 | addcld 10994 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℂ) |
8 | 2, 7 | mulcomd 10996 | . 2 ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · 𝐵)) |
9 | 4, 2 | mulcomd 10996 | . . . . 5 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶)) |
10 | int-rightdistd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
11 | 10 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝐴) |
12 | 11 | oveq1d 7290 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶)) |
13 | 9, 12 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐴 · 𝐶)) |
14 | 6, 2 | mulcomd 10996 | . . . . 5 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
15 | 11 | oveq1d 7290 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝐷) = (𝐴 · 𝐷)) |
16 | 14, 15 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐴 · 𝐷)) |
17 | 13, 16 | oveq12d 7293 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
18 | 4, 2, 6, 17 | joinlmuladdmuld 11002 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
19 | 8, 18 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-addcl 10931 ax-mulcom 10935 ax-distr 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |