Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-rightdistd Structured version   Visualization version   GIF version

Theorem int-rightdistd 44142
Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-rightdistd.1 (𝜑𝐵 ∈ ℝ)
int-rightdistd.2 (𝜑𝐶 ∈ ℝ)
int-rightdistd.3 (𝜑𝐷 ∈ ℝ)
int-rightdistd.4 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-rightdistd (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))

Proof of Theorem int-rightdistd
StepHypRef Expression
1 int-rightdistd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
21recnd 11318 . . 3 (𝜑𝐵 ∈ ℂ)
3 int-rightdistd.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
43recnd 11318 . . . 4 (𝜑𝐶 ∈ ℂ)
5 int-rightdistd.3 . . . . 5 (𝜑𝐷 ∈ ℝ)
65recnd 11318 . . . 4 (𝜑𝐷 ∈ ℂ)
74, 6addcld 11309 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
82, 7mulcomd 11311 . 2 (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · 𝐵))
94, 2mulcomd 11311 . . . . 5 (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶))
10 int-rightdistd.4 . . . . . . 7 (𝜑𝐴 = 𝐵)
1110eqcomd 2746 . . . . . 6 (𝜑𝐵 = 𝐴)
1211oveq1d 7463 . . . . 5 (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶))
139, 12eqtrd 2780 . . . 4 (𝜑 → (𝐶 · 𝐵) = (𝐴 · 𝐶))
146, 2mulcomd 11311 . . . . 5 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
1511oveq1d 7463 . . . . 5 (𝜑 → (𝐵 · 𝐷) = (𝐴 · 𝐷))
1614, 15eqtrd 2780 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐴 · 𝐷))
1713, 16oveq12d 7466 . . 3 (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
184, 2, 6, 17joinlmuladdmuld 11317 . 2 (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
198, 18eqtrd 2780 1 (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cr 11183   + caddc 11187   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-resscn 11241  ax-addcl 11244  ax-mulcom 11248  ax-distr 11251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator