| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-rightdistd | Structured version Visualization version GIF version | ||
| Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-rightdistd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| int-rightdistd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| int-rightdistd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| int-rightdistd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-rightdistd | ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-rightdistd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 1 | recnd 11220 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | int-rightdistd.2 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | 3 | recnd 11220 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 5 | int-rightdistd.3 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 6 | 5 | recnd 11220 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 7 | 4, 6 | addcld 11211 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℂ) |
| 8 | 2, 7 | mulcomd 11213 | . 2 ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · 𝐵)) |
| 9 | 4, 2 | mulcomd 11213 | . . . . 5 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶)) |
| 10 | int-rightdistd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 11 | 10 | eqcomd 2736 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 12 | 11 | oveq1d 7409 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶)) |
| 13 | 9, 12 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐴 · 𝐶)) |
| 14 | 6, 2 | mulcomd 11213 | . . . . 5 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
| 15 | 11 | oveq1d 7409 | . . . . 5 ⊢ (𝜑 → (𝐵 · 𝐷) = (𝐴 · 𝐷)) |
| 16 | 14, 15 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐴 · 𝐷)) |
| 17 | 13, 16 | oveq12d 7412 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
| 18 | 4, 2, 6, 17 | joinlmuladdmuld 11219 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
| 19 | 8, 18 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7394 ℝcr 11085 + caddc 11089 · cmul 11091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11143 ax-addcl 11146 ax-mulcom 11150 ax-distr 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-ov 7397 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |