| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > int-leftdistd | Structured version Visualization version GIF version | ||
| Description: AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| int-leftdistd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| int-leftdistd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| int-leftdistd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| int-leftdistd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| int-leftdistd | ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | int-leftdistd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | 1 | recnd 11132 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 3 | int-leftdistd.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 4 | 3 | recnd 11132 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 5 | int-leftdistd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 5 | recnd 11132 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 7 | 2, 4, 6 | adddird 11129 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐵) + (𝐷 · 𝐵))) |
| 8 | 2, 6 | mulcld 11124 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
| 9 | 4, 6 | mulcld 11124 | . . 3 ⊢ (𝜑 → (𝐷 · 𝐵) ∈ ℂ) |
| 10 | 8, 9 | addcomd 11307 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐷 · 𝐵) + (𝐶 · 𝐵))) |
| 11 | 9, 8 | addcomd 11307 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) + (𝐶 · 𝐵)) = ((𝐶 · 𝐵) + (𝐷 · 𝐵))) |
| 12 | int-leftdistd.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 13 | 12 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 14 | 13 | oveq2d 7357 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴)) |
| 15 | 13 | oveq2d 7357 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐷 · 𝐴)) |
| 16 | 14, 15 | oveq12d 7359 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
| 17 | 11, 16 | eqtrd 2765 | . 2 ⊢ (𝜑 → ((𝐷 · 𝐵) + (𝐶 · 𝐵)) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
| 18 | 7, 10, 17 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℝcr 10997 + caddc 11001 · cmul 11003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |