Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-leftdistd Structured version   Visualization version   GIF version

Theorem int-leftdistd 40699
Description: AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-leftdistd.1 (𝜑𝐵 ∈ ℝ)
int-leftdistd.2 (𝜑𝐶 ∈ ℝ)
int-leftdistd.3 (𝜑𝐷 ∈ ℝ)
int-leftdistd.4 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-leftdistd (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴)))

Proof of Theorem int-leftdistd
StepHypRef Expression
1 int-leftdistd.2 . . . 4 (𝜑𝐶 ∈ ℝ)
21recnd 10646 . . 3 (𝜑𝐶 ∈ ℂ)
3 int-leftdistd.3 . . . 4 (𝜑𝐷 ∈ ℝ)
43recnd 10646 . . 3 (𝜑𝐷 ∈ ℂ)
5 int-leftdistd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
65recnd 10646 . . 3 (𝜑𝐵 ∈ ℂ)
72, 4, 6adddird 10643 . 2 (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐵) + (𝐷 · 𝐵)))
82, 6mulcld 10638 . . 3 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
94, 6mulcld 10638 . . 3 (𝜑 → (𝐷 · 𝐵) ∈ ℂ)
108, 9addcomd 10819 . 2 (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐷 · 𝐵) + (𝐶 · 𝐵)))
119, 8addcomd 10819 . . 3 (𝜑 → ((𝐷 · 𝐵) + (𝐶 · 𝐵)) = ((𝐶 · 𝐵) + (𝐷 · 𝐵)))
12 int-leftdistd.4 . . . . . 6 (𝜑𝐴 = 𝐵)
1312eqcomd 2827 . . . . 5 (𝜑𝐵 = 𝐴)
1413oveq2d 7146 . . . 4 (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴))
1513oveq2d 7146 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐷 · 𝐴))
1614, 15oveq12d 7148 . . 3 (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐶 · 𝐴) + (𝐷 · 𝐴)))
1711, 16eqtrd 2856 . 2 (𝜑 → ((𝐷 · 𝐵) + (𝐶 · 𝐵)) = ((𝐶 · 𝐴) + (𝐷 · 𝐴)))
187, 10, 173eqtrd 2860 1 (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  (class class class)co 7130  cr 10513   + caddc 10517   · cmul 10519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-ltxr 10657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator