Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-leftdistd | Structured version Visualization version GIF version |
Description: AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-leftdistd.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
int-leftdistd.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-leftdistd.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
int-leftdistd.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
int-leftdistd | ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-leftdistd.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | 1 | recnd 11049 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
3 | int-leftdistd.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
4 | 3 | recnd 11049 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
5 | int-leftdistd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 5 | recnd 11049 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
7 | 2, 4, 6 | adddird 11046 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐵) + (𝐷 · 𝐵))) |
8 | 2, 6 | mulcld 11041 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
9 | 4, 6 | mulcld 11041 | . . 3 ⊢ (𝜑 → (𝐷 · 𝐵) ∈ ℂ) |
10 | 8, 9 | addcomd 11223 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐷 · 𝐵) + (𝐶 · 𝐵))) |
11 | 9, 8 | addcomd 11223 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) + (𝐶 · 𝐵)) = ((𝐶 · 𝐵) + (𝐷 · 𝐵))) |
12 | int-leftdistd.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
13 | 12 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐴) |
14 | 13 | oveq2d 7323 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐶 · 𝐴)) |
15 | 13 | oveq2d 7323 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐷 · 𝐴)) |
16 | 14, 15 | oveq12d 7325 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
17 | 11, 16 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((𝐷 · 𝐵) + (𝐶 · 𝐵)) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
18 | 7, 10, 17 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 (class class class)co 7307 ℝcr 10916 + caddc 10920 · cmul 10922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-ltxr 11060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |