![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuld.1 | โข (๐ โ ๐ด โ โ) |
joinlmuladdmuld.2 | โข (๐ โ ๐ต โ โ) |
joinlmuladdmuld.3 | โข (๐ โ ๐ถ โ โ) |
joinlmuladdmuld.4 | โข (๐ โ ((๐ด ยท ๐ต) + (๐ถ ยท ๐ต)) = ๐ท) |
Ref | Expression |
---|---|
joinlmuladdmuld | โข (๐ โ ((๐ด + ๐ถ) ยท ๐ต) = ๐ท) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuld.1 | . . 3 โข (๐ โ ๐ด โ โ) | |
2 | joinlmuladdmuld.3 | . . 3 โข (๐ โ ๐ถ โ โ) | |
3 | joinlmuladdmuld.2 | . . 3 โข (๐ โ ๐ต โ โ) | |
4 | 1, 2, 3 | adddird 11238 | . 2 โข (๐ โ ((๐ด + ๐ถ) ยท ๐ต) = ((๐ด ยท ๐ต) + (๐ถ ยท ๐ต))) |
5 | joinlmuladdmuld.4 | . 2 โข (๐ โ ((๐ด ยท ๐ต) + (๐ถ ยท ๐ต)) = ๐ท) | |
6 | 4, 5 | eqtrd 2772 | 1 โข (๐ โ ((๐ด + ๐ถ) ยท ๐ต) = ๐ท) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 (class class class)co 7408 โcc 11107 + caddc 11112 ยท cmul 11114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-addcl 11169 ax-mulcom 11173 ax-distr 11176 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: 1p1times 11384 div4p1lem1div2 12466 ltdifltdiv 13798 discr1 14201 arisum 15805 bezoutlem3 16482 bezoutlem4 16483 mbfi1fseqlem4 25235 itgmulc2 25350 tangtx 26014 binom4 26352 axcontlem8 28226 int-rightdistd 42922 fmtnorec2lem 46200 joinlmuladdmuli 47810 |
Copyright terms: Public domain | W3C validator |