| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version | ||
| Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11206 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
| 5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
| 6 | 4, 5 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-addcl 11135 ax-mulcom 11139 ax-distr 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: 1p1times 11352 div4p1lem1div2 12444 ltdifltdiv 13803 discr1 14211 arisum 15833 bezoutlem3 16518 bezoutlem4 16519 mbfi1fseqlem4 25626 itgmulc2 25742 tangtx 26421 binom4 26767 axcontlem8 28905 zringfrac 33532 constrrtcclem 33731 cos9thpiminplylem2 33780 int-rightdistd 44176 fmtnorec2lem 47547 joinlmuladdmuli 49766 |
| Copyright terms: Public domain | W3C validator |