![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuld.1 | โข (๐ โ ๐ด โ โ) |
joinlmuladdmuld.2 | โข (๐ โ ๐ต โ โ) |
joinlmuladdmuld.3 | โข (๐ โ ๐ถ โ โ) |
joinlmuladdmuld.4 | โข (๐ โ ((๐ด ยท ๐ต) + (๐ถ ยท ๐ต)) = ๐ท) |
Ref | Expression |
---|---|
joinlmuladdmuld | โข (๐ โ ((๐ด + ๐ถ) ยท ๐ต) = ๐ท) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuld.1 | . . 3 โข (๐ โ ๐ด โ โ) | |
2 | joinlmuladdmuld.3 | . . 3 โข (๐ โ ๐ถ โ โ) | |
3 | joinlmuladdmuld.2 | . . 3 โข (๐ โ ๐ต โ โ) | |
4 | 1, 2, 3 | adddird 11269 | . 2 โข (๐ โ ((๐ด + ๐ถ) ยท ๐ต) = ((๐ด ยท ๐ต) + (๐ถ ยท ๐ต))) |
5 | joinlmuladdmuld.4 | . 2 โข (๐ โ ((๐ด ยท ๐ต) + (๐ถ ยท ๐ต)) = ๐ท) | |
6 | 4, 5 | eqtrd 2765 | 1 โข (๐ โ ((๐ด + ๐ถ) ยท ๐ต) = ๐ท) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 (class class class)co 7417 โcc 11136 + caddc 11141 ยท cmul 11143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-addcl 11198 ax-mulcom 11202 ax-distr 11205 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6499 df-fv 6555 df-ov 7420 |
This theorem is referenced by: 1p1times 11415 div4p1lem1div2 12497 ltdifltdiv 13831 discr1 14233 arisum 15838 bezoutlem3 16516 bezoutlem4 16517 mbfi1fseqlem4 25678 itgmulc2 25793 tangtx 26470 binom4 26812 axcontlem8 28838 zringfrac 33314 int-rightdistd 43675 fmtnorec2lem 46945 joinlmuladdmuli 48318 |
Copyright terms: Public domain | W3C validator |