Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
Ref | Expression |
---|---|
joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 10931 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
6 | 4, 5 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-addcl 10862 ax-mulcom 10866 ax-distr 10869 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: 1p1times 11076 div4p1lem1div2 12158 ltdifltdiv 13482 discr1 13882 arisum 15500 bezoutlem3 16177 bezoutlem4 16178 mbfi1fseqlem4 24788 itgmulc2 24903 tangtx 25567 binom4 25905 axcontlem8 27242 int-rightdistd 41680 fmtnorec2lem 44882 joinlmuladdmuli 46363 |
Copyright terms: Public domain | W3C validator |