| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version | ||
| Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11260 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
| 5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
| 6 | 4, 5 | eqtrd 2770 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-addcl 11189 ax-mulcom 11193 ax-distr 11196 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: 1p1times 11406 div4p1lem1div2 12496 ltdifltdiv 13851 discr1 14257 arisum 15876 bezoutlem3 16560 bezoutlem4 16561 mbfi1fseqlem4 25671 itgmulc2 25787 tangtx 26466 binom4 26812 axcontlem8 28950 zringfrac 33569 constrrtcclem 33768 cos9thpiminplylem2 33817 int-rightdistd 44204 fmtnorec2lem 47556 joinlmuladdmuli 49637 |
| Copyright terms: Public domain | W3C validator |