![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version |
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
Ref | Expression |
---|---|
joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
Ref | Expression |
---|---|
joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 10457 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
6 | 4, 5 | eqtrd 2808 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2048 (class class class)co 6970 ℂcc 10325 + caddc 10330 · cmul 10332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-addcl 10387 ax-mulcom 10391 ax-distr 10394 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-iota 6146 df-fv 6190 df-ov 6973 |
This theorem is referenced by: 1p1times 10603 div4p1lem1div2 11695 ltdifltdiv 13012 discr1 13408 arisum 15065 bezoutlem3 15735 bezoutlem4 15736 mbfi1fseqlem4 24012 itgmulc2 24127 tangtx 24784 binom4 25119 axcontlem8 26450 int-rightdistd 39843 fmtnorec2lem 43012 joinlmuladdmuli 44181 |
Copyright terms: Public domain | W3C validator |