MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlmuladdmuld Structured version   Visualization version   GIF version

Theorem joinlmuladdmuld 11075
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuld.1 (𝜑𝐴 ∈ ℂ)
joinlmuladdmuld.2 (𝜑𝐵 ∈ ℂ)
joinlmuladdmuld.3 (𝜑𝐶 ∈ ℂ)
joinlmuladdmuld.4 (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
Assertion
Ref Expression
joinlmuladdmuld (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)

Proof of Theorem joinlmuladdmuld
StepHypRef Expression
1 joinlmuladdmuld.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 joinlmuladdmuld.3 . . 3 (𝜑𝐶 ∈ ℂ)
3 joinlmuladdmuld.2 . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 11073 . 2 (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵)))
5 joinlmuladdmuld.4 . 2 (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
64, 5eqtrd 2777 1 (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  (class class class)co 7315  cc 10942   + caddc 10947   · cmul 10949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-addcl 11004  ax-mulcom 11008  ax-distr 11011
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6417  df-fv 6473  df-ov 7318
This theorem is referenced by:  1p1times  11219  div4p1lem1div2  12301  ltdifltdiv  13627  discr1  14027  arisum  15644  bezoutlem3  16321  bezoutlem4  16322  mbfi1fseqlem4  24955  itgmulc2  25070  tangtx  25734  binom4  26072  axcontlem8  27448  int-rightdistd  42012  fmtnorec2lem  45246  joinlmuladdmuli  46729
  Copyright terms: Public domain W3C validator