MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlmuladdmuld Structured version   Visualization version   GIF version

Theorem joinlmuladdmuld 11201
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuld.1 (𝜑𝐴 ∈ ℂ)
joinlmuladdmuld.2 (𝜑𝐵 ∈ ℂ)
joinlmuladdmuld.3 (𝜑𝐶 ∈ ℂ)
joinlmuladdmuld.4 (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
Assertion
Ref Expression
joinlmuladdmuld (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)

Proof of Theorem joinlmuladdmuld
StepHypRef Expression
1 joinlmuladdmuld.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 joinlmuladdmuld.3 . . 3 (𝜑𝐶 ∈ ℂ)
3 joinlmuladdmuld.2 . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 11199 . 2 (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵)))
5 joinlmuladdmuld.4 . 2 (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
64, 5eqtrd 2764 1 (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066   + caddc 11071   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-addcl 11128  ax-mulcom 11132  ax-distr 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  1p1times  11345  div4p1lem1div2  12437  ltdifltdiv  13796  discr1  14204  arisum  15826  bezoutlem3  16511  bezoutlem4  16512  mbfi1fseqlem4  25619  itgmulc2  25735  tangtx  26414  binom4  26760  axcontlem8  28898  zringfrac  33525  constrrtcclem  33724  cos9thpiminplylem2  33773  int-rightdistd  44169  fmtnorec2lem  47543  joinlmuladdmuli  49762
  Copyright terms: Public domain W3C validator