MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlmuladdmuld Structured version   Visualization version   GIF version

Theorem joinlmuladdmuld 10933
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuld.1 (𝜑𝐴 ∈ ℂ)
joinlmuladdmuld.2 (𝜑𝐵 ∈ ℂ)
joinlmuladdmuld.3 (𝜑𝐶 ∈ ℂ)
joinlmuladdmuld.4 (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
Assertion
Ref Expression
joinlmuladdmuld (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)

Proof of Theorem joinlmuladdmuld
StepHypRef Expression
1 joinlmuladdmuld.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 joinlmuladdmuld.3 . . 3 (𝜑𝐶 ∈ ℂ)
3 joinlmuladdmuld.2 . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 10931 . 2 (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵)))
5 joinlmuladdmuld.4 . 2 (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)
64, 5eqtrd 2778 1 (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-addcl 10862  ax-mulcom 10866  ax-distr 10869
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  1p1times  11076  div4p1lem1div2  12158  ltdifltdiv  13482  discr1  13882  arisum  15500  bezoutlem3  16177  bezoutlem4  16178  mbfi1fseqlem4  24788  itgmulc2  24903  tangtx  25567  binom4  25905  axcontlem8  27242  int-rightdistd  41680  fmtnorec2lem  44882  joinlmuladdmuli  46363
  Copyright terms: Public domain W3C validator