| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version | ||
| Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11140 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
| 5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
| 6 | 4, 5 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 + caddc 11012 · cmul 11014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-addcl 11069 ax-mulcom 11073 ax-distr 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: 1p1times 11287 div4p1lem1div2 12379 ltdifltdiv 13738 discr1 14146 arisum 15767 bezoutlem3 16452 bezoutlem4 16453 mbfi1fseqlem4 25617 itgmulc2 25733 tangtx 26412 binom4 26758 axcontlem8 28916 zringfrac 33491 constrrtcclem 33701 cos9thpiminplylem2 33750 int-rightdistd 44157 fmtnorec2lem 47530 joinlmuladdmuli 49762 |
| Copyright terms: Public domain | W3C validator |