| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinlmuladdmuld | Structured version Visualization version GIF version | ||
| Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| joinlmuladdmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| joinlmuladdmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| joinlmuladdmuld.4 | ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) |
| Ref | Expression |
|---|---|
| joinlmuladdmuld | ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | joinlmuladdmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | joinlmuladdmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11175 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = ((𝐴 · 𝐵) + (𝐶 · 𝐵))) |
| 5 | joinlmuladdmuld.4 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) | |
| 6 | 4, 5 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-addcl 11104 ax-mulcom 11108 ax-distr 11111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: 1p1times 11321 div4p1lem1div2 12413 ltdifltdiv 13772 discr1 14180 arisum 15802 bezoutlem3 16487 bezoutlem4 16488 mbfi1fseqlem4 25595 itgmulc2 25711 tangtx 26390 binom4 26736 axcontlem8 28874 zringfrac 33498 constrrtcclem 33697 cos9thpiminplylem2 33746 int-rightdistd 44142 fmtnorec2lem 47516 joinlmuladdmuli 49735 |
| Copyright terms: Public domain | W3C validator |