![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssintab | Structured version Visualization version GIF version |
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
ssintab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4988 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦) | |
2 | sseq2 4035 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑥)) | |
3 | 2 | ralab2 3719 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦 ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 {cab 2717 ∀wral 3067 ⊆ wss 3976 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-int 4971 |
This theorem is referenced by: ssmin 4991 ssintrab 4995 intmin4 5001 dffi2 9492 dfttrcl2 9793 rankval3b 9895 sstskm 10911 dfuzi 12734 cycsubg 19248 ssmclslem 35533 mptrcllem 43575 dfrcl2 43636 brtrclfv2 43689 |
Copyright terms: Public domain | W3C validator |