| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintab | Structured version Visualization version GIF version | ||
| Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssintab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4964 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 4010 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | ralab2 3703 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦 ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 {cab 2714 ∀wral 3061 ⊆ wss 3951 ∩ cint 4946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-ss 3968 df-int 4947 |
| This theorem is referenced by: ssmin 4967 ssintrab 4971 intmin4 4977 dffi2 9463 dfttrcl2 9764 rankval3b 9866 sstskm 10882 dfuzi 12709 cycsubg 19226 ssmclslem 35570 mptrcllem 43626 dfrcl2 43687 brtrclfv2 43740 |
| Copyright terms: Public domain | W3C validator |