MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintab Structured version   Visualization version   GIF version

Theorem ssintab 4969
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
ssintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4968 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦 ∈ {𝑥𝜑}𝐴𝑦)
2 sseq2 4008 . . 3 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
32ralab2 3693 . 2 (∀𝑦 ∈ {𝑥𝜑}𝐴𝑦 ↔ ∀𝑥(𝜑𝐴𝑥))
41, 3bitri 275 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538  {cab 2708  wral 3060  wss 3948   cint 4950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-in 3955  df-ss 3965  df-int 4951
This theorem is referenced by:  ssmin  4971  ssintrab  4975  intmin4  4981  dffi2  9421  dfttrcl2  9722  rankval3b  9824  sstskm  10840  dfuzi  12658  cycsubg  19124  ssmclslem  34855  mptrcllem  42667  dfrcl2  42728  brtrclfv2  42781
  Copyright terms: Public domain W3C validator