| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintab | Structured version Visualization version GIF version | ||
| Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssintab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4914 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3961 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | ralab2 3656 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦 ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 {cab 2709 ∀wral 3047 ⊆ wss 3902 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3919 df-int 4898 |
| This theorem is referenced by: ssmin 4917 ssintrab 4921 intmin4 4927 dffi2 9307 dfttrcl2 9614 rankval3b 9716 sstskm 10730 dfuzi 12561 cycsubg 19118 ssmclslem 35597 mptrcllem 43645 dfrcl2 43706 brtrclfv2 43759 |
| Copyright terms: Public domain | W3C validator |