MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintab Structured version   Visualization version   GIF version

Theorem ssintab 4932
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
ssintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4931 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦 ∈ {𝑥𝜑}𝐴𝑦)
2 sseq2 3976 . . 3 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
32ralab2 3671 . 2 (∀𝑦 ∈ {𝑥𝜑}𝐴𝑦 ↔ ∀𝑥(𝜑𝐴𝑥))
41, 3bitri 275 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  {cab 2708  wral 3045  wss 3917   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3934  df-int 4914
This theorem is referenced by:  ssmin  4934  ssintrab  4938  intmin4  4944  dffi2  9381  dfttrcl2  9684  rankval3b  9786  sstskm  10802  dfuzi  12632  cycsubg  19147  ssmclslem  35559  mptrcllem  43609  dfrcl2  43670  brtrclfv2  43723
  Copyright terms: Public domain W3C validator