| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotavb | Structured version Visualization version GIF version | ||
| Description: The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| aiotavb | ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnex 5325 | . . 3 ⊢ (¬ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = V) | |
| 2 | df-aiota 47055 | . . . . 5 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
| 3 | 2 | eleq1i 2824 | . . . 4 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ (℩'𝑥𝜑) ∈ V ↔ ¬ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
| 5 | 2 | eqeq1i 2739 | . . 3 ⊢ ((℩'𝑥𝜑) = V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = V) |
| 6 | 1, 4, 5 | 3bitr4i 303 | . 2 ⊢ (¬ (℩'𝑥𝜑) ∈ V ↔ (℩'𝑥𝜑) = V) |
| 7 | aiotaexb 47059 | . 2 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | |
| 8 | 6, 7 | xchnxbir 333 | 1 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃!weu 2566 {cab 2712 Vcvv 3463 {csn 4606 ∩ cint 4926 ℩'caiota 47053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-sn 4607 df-int 4927 df-aiota 47055 |
| This theorem is referenced by: dfaiota3 47062 dfafv2 47102 |
| Copyright terms: Public domain | W3C validator |