![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotavb | Structured version Visualization version GIF version |
Description: The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiotavb | ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnex 5339 | . . 3 ⊢ (¬ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = V) | |
2 | df-aiota 45793 | . . . . 5 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
3 | 2 | eleq1i 2825 | . . . 4 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
4 | 3 | notbii 320 | . . 3 ⊢ (¬ (℩'𝑥𝜑) ∈ V ↔ ¬ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
5 | 2 | eqeq1i 2738 | . . 3 ⊢ ((℩'𝑥𝜑) = V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = V) |
6 | 1, 4, 5 | 3bitr4i 303 | . 2 ⊢ (¬ (℩'𝑥𝜑) ∈ V ↔ (℩'𝑥𝜑) = V) |
7 | aiotaexb 45797 | . 2 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | |
8 | 6, 7 | xchnxbir 333 | 1 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 {cab 2710 Vcvv 3475 {csn 4629 ∩ cint 4951 ℩'caiota 45791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-int 4952 df-aiota 45793 |
This theorem is referenced by: dfaiota3 45800 dfafv2 45840 |
Copyright terms: Public domain | W3C validator |