Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotavb Structured version   Visualization version   GIF version

Theorem aiotavb 47121
Description: The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotavb (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V)

Proof of Theorem aiotavb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intnex 5278 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = V)
2 df-aiota 47116 . . . . 5 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
32eleq1i 2822 . . . 4 ((℩'𝑥𝜑) ∈ V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
43notbii 320 . . 3 (¬ (℩'𝑥𝜑) ∈ V ↔ ¬ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
52eqeq1i 2736 . . 3 ((℩'𝑥𝜑) = V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = V)
61, 4, 53bitr4i 303 . 2 (¬ (℩'𝑥𝜑) ∈ V ↔ (℩'𝑥𝜑) = V)
7 aiotaexb 47120 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
86, 7xchnxbir 333 1 (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  ∃!weu 2563  {cab 2709  Vcvv 3436  {csn 4571   cint 4892  ℩'caiota 47114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4279  df-sn 4572  df-int 4893  df-aiota 47116
This theorem is referenced by:  dfaiota3  47123  dfafv2  47163
  Copyright terms: Public domain W3C validator