| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotavb | Structured version Visualization version GIF version | ||
| Description: The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| aiotavb | ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnex 5300 | . . 3 ⊢ (¬ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = V) | |
| 2 | df-aiota 47086 | . . . . 5 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
| 3 | 2 | eleq1i 2819 | . . . 4 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ (℩'𝑥𝜑) ∈ V ↔ ¬ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
| 5 | 2 | eqeq1i 2734 | . . 3 ⊢ ((℩'𝑥𝜑) = V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = V) |
| 6 | 1, 4, 5 | 3bitr4i 303 | . 2 ⊢ (¬ (℩'𝑥𝜑) ∈ V ↔ (℩'𝑥𝜑) = V) |
| 7 | aiotaexb 47090 | . 2 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | |
| 8 | 6, 7 | xchnxbir 333 | 1 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 {cab 2707 Vcvv 3447 {csn 4589 ∩ cint 4910 ℩'caiota 47084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-int 4911 df-aiota 47086 |
| This theorem is referenced by: dfaiota3 47093 dfafv2 47133 |
| Copyright terms: Public domain | W3C validator |