Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotavb Structured version   Visualization version   GIF version

Theorem aiotavb 47252
Description: The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotavb (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V)

Proof of Theorem aiotavb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intnex 5287 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = V)
2 df-aiota 47247 . . . . 5 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
32eleq1i 2824 . . . 4 ((℩'𝑥𝜑) ∈ V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
43notbii 320 . . 3 (¬ (℩'𝑥𝜑) ∈ V ↔ ¬ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
52eqeq1i 2738 . . 3 ((℩'𝑥𝜑) = V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = V)
61, 4, 53bitr4i 303 . 2 (¬ (℩'𝑥𝜑) ∈ V ↔ (℩'𝑥𝜑) = V)
7 aiotaexb 47251 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
86, 7xchnxbir 333 1 (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2113  ∃!weu 2565  {cab 2711  Vcvv 3437  {csn 4577   cint 4899  ℩'caiota 47245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283  df-sn 4578  df-int 4900  df-aiota 47247
This theorem is referenced by:  dfaiota3  47254  dfafv2  47294
  Copyright terms: Public domain W3C validator