| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| Ref | Expression |
|---|---|
| intexab | ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0 4333 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
| 2 | intex 5280 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2110 {cab 2708 ≠ wne 2926 Vcvv 3434 ∅c0 4281 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-in 3907 df-ss 3917 df-nul 4282 df-int 4896 |
| This theorem is referenced by: intexrab 5283 tcmin 9626 cfval 10130 efgval 19622 tz9.1regs 35102 relintabex 43593 rclexi 43627 rtrclex 43629 trclexi 43632 rtrclexi 43633 aiotaexb 47099 |
| Copyright terms: Public domain | W3C validator |