![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
Ref | Expression |
---|---|
intexab | ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 4408 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
2 | intex 5362 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | bitr3i 277 | 1 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 ∈ wcel 2108 {cab 2717 ≠ wne 2946 Vcvv 3488 ∅c0 4352 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-int 4971 |
This theorem is referenced by: intexrab 5365 tcmin 9810 cfval 10316 efgval 19759 relintabex 43543 rclexi 43577 rtrclex 43579 trclexi 43582 rtrclexi 43583 aiotaexb 47004 |
Copyright terms: Public domain | W3C validator |