| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| Ref | Expression |
|---|---|
| intexab | ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0 4334 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
| 2 | intex 5284 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 Vcvv 3436 ∅c0 4282 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4283 df-int 4898 |
| This theorem is referenced by: intexrab 5287 tcmin 9635 cfval 10144 efgval 19635 tz9.1regs 35137 relintabex 43679 rclexi 43713 rtrclex 43715 trclexi 43718 rtrclexi 43719 aiotaexb 47194 |
| Copyright terms: Public domain | W3C validator |