MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexab Structured version   Visualization version   GIF version

Theorem intexab 5286
Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexab (∃𝑥𝜑 {𝑥𝜑} ∈ V)

Proof of Theorem intexab
StepHypRef Expression
1 abn0 4334 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 intex 5284 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥𝜑} ∈ V)
31, 2bitr3i 277 1 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2111  {cab 2709  wne 2928  Vcvv 3436  c0 4282   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4283  df-int 4898
This theorem is referenced by:  intexrab  5287  tcmin  9635  cfval  10144  efgval  19635  tz9.1regs  35137  relintabex  43679  rclexi  43713  rtrclex  43715  trclexi  43718  rtrclexi  43719  aiotaexb  47194
  Copyright terms: Public domain W3C validator