Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
Ref | Expression |
---|---|
intexab | ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 4314 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
2 | intex 5261 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | bitr3i 276 | 1 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 ∈ wcel 2106 {cab 2715 ≠ wne 2943 Vcvv 3432 ∅c0 4256 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-int 4880 |
This theorem is referenced by: intexrab 5264 tcmin 9499 cfval 10003 efgval 19323 relintabex 41189 rclexi 41223 rtrclex 41225 trclexi 41228 rtrclexi 41229 aiotaexb 44581 |
Copyright terms: Public domain | W3C validator |