MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexab Structured version   Visualization version   GIF version

Theorem intexab 5282
Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexab (∃𝑥𝜑 {𝑥𝜑} ∈ V)

Proof of Theorem intexab
StepHypRef Expression
1 abn0 4333 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 intex 5280 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥𝜑} ∈ V)
31, 2bitr3i 277 1 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2110  {cab 2708  wne 2926  Vcvv 3434  c0 4281   cint 4895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-in 3907  df-ss 3917  df-nul 4282  df-int 4896
This theorem is referenced by:  intexrab  5283  tcmin  9626  cfval  10130  efgval  19622  tz9.1regs  35102  relintabex  43593  rclexi  43627  rtrclex  43629  trclexi  43632  rtrclexi  43633  aiotaexb  47099
  Copyright terms: Public domain W3C validator