Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
Ref | Expression |
---|---|
intexab | ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 4319 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
2 | intex 5264 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | bitr3i 276 | 1 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1785 ∈ wcel 2109 {cab 2716 ≠ wne 2944 Vcvv 3430 ∅c0 4261 ∩ cint 4884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-int 4885 |
This theorem is referenced by: intexrab 5267 tcmin 9482 cfval 9987 efgval 19304 relintabex 41142 rclexi 41176 rtrclex 41178 trclexi 41181 rtrclexi 41182 aiotaexb 44532 |
Copyright terms: Public domain | W3C validator |