MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexab Structured version   Visualization version   GIF version

Theorem intexab 5258
Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexab (∃𝑥𝜑 {𝑥𝜑} ∈ V)

Proof of Theorem intexab
StepHypRef Expression
1 abn0 4311 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 intex 5256 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥𝜑} ∈ V)
31, 2bitr3i 276 1 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1783  wcel 2108  {cab 2715  wne 2942  Vcvv 3422  c0 4253   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-int 4877
This theorem is referenced by:  intexrab  5259  tcmin  9430  cfval  9934  efgval  19238  relintabex  41078  rclexi  41112  rtrclex  41114  trclexi  41117  rtrclexi  41118  aiotaexb  44468
  Copyright terms: Public domain W3C validator