| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intexab | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| Ref | Expression |
|---|---|
| intexab | ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0 4350 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
| 2 | intex 5301 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 Vcvv 3450 ∅c0 4298 ∩ cint 4912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-in 3923 df-ss 3933 df-nul 4299 df-int 4913 |
| This theorem is referenced by: intexrab 5304 tcmin 9700 cfval 10206 efgval 19653 relintabex 43563 rclexi 43597 rtrclex 43599 trclexi 43602 rtrclexi 43603 aiotaexb 47080 |
| Copyright terms: Public domain | W3C validator |