| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4476 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4917 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
| 5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
| 6 | 5 | eqriv 2726 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∅c0 4296 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-dif 3917 df-nul 4297 df-int 4911 |
| This theorem is referenced by: unissint 4936 uniintsn 4949 rint0 4952 intex 5299 intnex 5300 oev2 8487 fiint 9277 fiintOLD 9278 elfi2 9365 fi0 9371 cardmin2 9952 00lsp 20887 cmpfi 23295 ptbasfi 23468 fbssint 23725 fclscmp 23917 zarcmplem 33871 rankeq1o 36159 bj-0int 37089 heibor1lem 37803 ipoglb0 48982 mreclat 48985 |
| Copyright terms: Public domain | W3C validator |