MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0 Structured version   Visualization version   GIF version

Theorem int0 4966
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4512 . . . 4 𝑥 ∈ ∅ 𝑦𝑥
2 vex 3478 . . . . 5 𝑦 ∈ V
32elint2 4957 . . . 4 (𝑦 ∅ ↔ ∀𝑥 ∈ ∅ 𝑦𝑥)
41, 3mpbir 230 . . 3 𝑦
54, 22th 263 . 2 (𝑦 ∅ ↔ 𝑦 ∈ V)
65eqriv 2729 1 ∅ = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  c0 4322   cint 4950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-dif 3951  df-nul 4323  df-int 4951
This theorem is referenced by:  unissint  4976  uniintsn  4991  rint0  4994  intex  5337  intnex  5338  oev2  8522  fiint  9323  elfi2  9408  fi0  9414  cardmin2  9993  00lsp  20591  cmpfi  22911  ptbasfi  23084  fbssint  23341  fclscmp  23533  zarcmplem  32856  rankeq1o  35138  bj-0int  35977  heibor1lem  36672  ipoglb0  47609  mreclat  47612
  Copyright terms: Public domain W3C validator