Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4443 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
2 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4886 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
5 | 4, 2 | 2th 263 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
6 | 5 | eqriv 2735 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∅c0 4256 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-dif 3890 df-nul 4257 df-int 4880 |
This theorem is referenced by: unissint 4903 uniintsn 4918 rint0 4921 intex 5261 intnex 5262 oev2 8353 fiint 9091 elfi2 9173 fi0 9179 cardmin2 9757 00lsp 20243 cmpfi 22559 ptbasfi 22732 fbssint 22989 fclscmp 23181 zarcmplem 31831 rankeq1o 34473 bj-0int 35272 heibor1lem 35967 ipoglb0 46280 mreclat 46283 |
Copyright terms: Public domain | W3C validator |