MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0 Structured version   Visualization version   GIF version

Theorem int0 4893
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4443 . . . 4 𝑥 ∈ ∅ 𝑦𝑥
2 vex 3436 . . . . 5 𝑦 ∈ V
32elint2 4886 . . . 4 (𝑦 ∅ ↔ ∀𝑥 ∈ ∅ 𝑦𝑥)
41, 3mpbir 230 . . 3 𝑦
54, 22th 263 . 2 (𝑦 ∅ ↔ 𝑦 ∈ V)
65eqriv 2735 1 ∅ = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  c0 4256   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-dif 3890  df-nul 4257  df-int 4880
This theorem is referenced by:  unissint  4903  uniintsn  4918  rint0  4921  intex  5261  intnex  5262  oev2  8353  fiint  9091  elfi2  9173  fi0  9179  cardmin2  9757  00lsp  20243  cmpfi  22559  ptbasfi  22732  fbssint  22989  fclscmp  23181  zarcmplem  31831  rankeq1o  34473  bj-0int  35272  heibor1lem  35967  ipoglb0  46280  mreclat  46283
  Copyright terms: Public domain W3C validator