| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4466 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
| 2 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4906 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
| 5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
| 6 | 5 | eqriv 2726 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∅c0 4286 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-dif 3908 df-nul 4287 df-int 4900 |
| This theorem is referenced by: unissint 4925 uniintsn 4938 rint0 4941 intex 5286 intnex 5287 oev2 8448 fiint 9235 fiintOLD 9236 elfi2 9323 fi0 9329 cardmin2 9914 00lsp 20902 cmpfi 23311 ptbasfi 23484 fbssint 23741 fclscmp 23933 zarcmplem 33847 rankeq1o 36144 bj-0int 37074 heibor1lem 37788 ipoglb0 48966 mreclat 48969 |
| Copyright terms: Public domain | W3C validator |