MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0 Structured version   Visualization version   GIF version

Theorem int0 4986
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4536 . . . 4 𝑥 ∈ ∅ 𝑦𝑥
2 vex 3492 . . . . 5 𝑦 ∈ V
32elint2 4977 . . . 4 (𝑦 ∅ ↔ ∀𝑥 ∈ ∅ 𝑦𝑥)
41, 3mpbir 231 . . 3 𝑦
54, 22th 264 . 2 (𝑦 ∅ ↔ 𝑦 ∈ V)
65eqriv 2737 1 ∅ = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  c0 4352   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-dif 3979  df-nul 4353  df-int 4971
This theorem is referenced by:  unissint  4996  uniintsn  5009  rint0  5012  intex  5362  intnex  5363  oev2  8579  fiint  9394  fiintOLD  9395  elfi2  9483  fi0  9489  cardmin2  10068  00lsp  21002  cmpfi  23437  ptbasfi  23610  fbssint  23867  fclscmp  24059  zarcmplem  33827  rankeq1o  36135  bj-0int  37067  heibor1lem  37769  ipoglb0  48666  mreclat  48669
  Copyright terms: Public domain W3C validator