MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0 Structured version   Visualization version   GIF version

Theorem int0 4942
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4493 . . . 4 𝑥 ∈ ∅ 𝑦𝑥
2 vex 3467 . . . . 5 𝑦 ∈ V
32elint2 4933 . . . 4 (𝑦 ∅ ↔ ∀𝑥 ∈ ∅ 𝑦𝑥)
41, 3mpbir 231 . . 3 𝑦
54, 22th 264 . 2 (𝑦 ∅ ↔ 𝑦 ∈ V)
65eqriv 2731 1 ∅ = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  c0 4313   cint 4926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-v 3465  df-dif 3934  df-nul 4314  df-int 4927
This theorem is referenced by:  unissint  4952  uniintsn  4965  rint0  4968  intex  5324  intnex  5325  oev2  8543  fiint  9348  fiintOLD  9349  elfi2  9436  fi0  9442  cardmin2  10021  00lsp  20948  cmpfi  23363  ptbasfi  23536  fbssint  23793  fclscmp  23985  zarcmplem  33855  rankeq1o  36147  bj-0int  37077  heibor1lem  37791  ipoglb0  48875  mreclat  48878
  Copyright terms: Public domain W3C validator