| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4464 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
| 2 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4906 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
| 5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
| 6 | 5 | eqriv 2730 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3049 Vcvv 3438 ∅c0 4284 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-v 3440 df-dif 3902 df-nul 4285 df-int 4900 |
| This theorem is referenced by: unissint 4924 uniintsn 4937 rint0 4940 intex 5286 intnex 5287 oev2 8447 fiint 9221 elfi2 9308 fi0 9314 cardmin2 9902 00lsp 20924 cmpfi 23333 ptbasfi 23506 fbssint 23763 fclscmp 23955 zarcmplem 33905 rankeq1o 36226 bj-0int 37156 heibor1lem 37859 ipoglb0 49108 mreclat 49111 |
| Copyright terms: Public domain | W3C validator |