![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4536 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
2 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4977 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
6 | 5 | eqriv 2737 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∅c0 4352 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-dif 3979 df-nul 4353 df-int 4971 |
This theorem is referenced by: unissint 4996 uniintsn 5009 rint0 5012 intex 5362 intnex 5363 oev2 8579 fiint 9394 fiintOLD 9395 elfi2 9483 fi0 9489 cardmin2 10068 00lsp 21002 cmpfi 23437 ptbasfi 23610 fbssint 23867 fclscmp 24059 zarcmplem 33827 rankeq1o 36135 bj-0int 37067 heibor1lem 37769 ipoglb0 48666 mreclat 48669 |
Copyright terms: Public domain | W3C validator |