MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0 Structured version   Visualization version   GIF version

Theorem int0 4910
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4461 . . . 4 𝑥 ∈ ∅ 𝑦𝑥
2 vex 3438 . . . . 5 𝑦 ∈ V
32elint2 4902 . . . 4 (𝑦 ∅ ↔ ∀𝑥 ∈ ∅ 𝑦𝑥)
41, 3mpbir 231 . . 3 𝑦
54, 22th 264 . 2 (𝑦 ∅ ↔ 𝑦 ∈ V)
65eqriv 2727 1 ∅ = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  c0 4281   cint 4895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3436  df-dif 3903  df-nul 4282  df-int 4896
This theorem is referenced by:  unissint  4920  uniintsn  4933  rint0  4936  intex  5280  intnex  5281  oev2  8433  fiint  9206  elfi2  9293  fi0  9299  cardmin2  9884  00lsp  20907  cmpfi  23316  ptbasfi  23489  fbssint  23746  fclscmp  23938  zarcmplem  33884  rankeq1o  36184  bj-0int  37114  heibor1lem  37828  ipoglb0  49004  mreclat  49007
  Copyright terms: Public domain W3C validator