![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4519 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
2 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4958 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
6 | 5 | eqriv 2732 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∅c0 4339 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-dif 3966 df-nul 4340 df-int 4952 |
This theorem is referenced by: unissint 4977 uniintsn 4990 rint0 4993 intex 5350 intnex 5351 oev2 8560 fiint 9364 fiintOLD 9365 elfi2 9452 fi0 9458 cardmin2 10037 00lsp 20997 cmpfi 23432 ptbasfi 23605 fbssint 23862 fclscmp 24054 zarcmplem 33842 rankeq1o 36153 bj-0int 37084 heibor1lem 37796 ipoglb0 48783 mreclat 48786 |
Copyright terms: Public domain | W3C validator |