Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4408 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
2 | vex 3413 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4848 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
4 | 1, 3 | mpbir 234 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
5 | 4, 2 | 2th 267 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
6 | 5 | eqriv 2755 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∅c0 4227 ∩ cint 4841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-dif 3863 df-nul 4228 df-int 4842 |
This theorem is referenced by: unissint 4865 uniintsn 4880 rint0 4883 intex 5211 intnex 5212 oev2 8164 fiint 8841 elfi2 8924 fi0 8930 cardmin2 9474 00lsp 19835 cmpfi 22122 ptbasfi 22295 fbssint 22552 fclscmp 22744 zarcmplem 31365 rankeq1o 34057 bj-0int 34831 heibor1lem 35562 |
Copyright terms: Public domain | W3C validator |