| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4493 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
| 2 | vex 3467 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4933 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
| 5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
| 6 | 5 | eqriv 2731 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ∅c0 4313 ∩ cint 4926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-dif 3934 df-nul 4314 df-int 4927 |
| This theorem is referenced by: unissint 4952 uniintsn 4965 rint0 4968 intex 5324 intnex 5325 oev2 8543 fiint 9348 fiintOLD 9349 elfi2 9436 fi0 9442 cardmin2 10021 00lsp 20948 cmpfi 23363 ptbasfi 23536 fbssint 23793 fclscmp 23985 zarcmplem 33855 rankeq1o 36147 bj-0int 37077 heibor1lem 37791 ipoglb0 48875 mreclat 48878 |
| Copyright terms: Public domain | W3C validator |