MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  int0 Structured version   Visualization version   GIF version

Theorem int0 4926
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4476 . . . 4 𝑥 ∈ ∅ 𝑦𝑥
2 vex 3451 . . . . 5 𝑦 ∈ V
32elint2 4917 . . . 4 (𝑦 ∅ ↔ ∀𝑥 ∈ ∅ 𝑦𝑥)
41, 3mpbir 231 . . 3 𝑦
54, 22th 264 . 2 (𝑦 ∅ ↔ 𝑦 ∈ V)
65eqriv 2726 1 ∅ = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  c0 4296   cint 4910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-dif 3917  df-nul 4297  df-int 4911
This theorem is referenced by:  unissint  4936  uniintsn  4949  rint0  4952  intex  5299  intnex  5300  oev2  8487  fiint  9277  fiintOLD  9278  elfi2  9365  fi0  9371  cardmin2  9952  00lsp  20887  cmpfi  23295  ptbasfi  23468  fbssint  23725  fclscmp  23917  zarcmplem  33871  rankeq1o  36159  bj-0int  37089  heibor1lem  37803  ipoglb0  48982  mreclat  48985
  Copyright terms: Public domain W3C validator