| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4461 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
| 2 | vex 3438 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4902 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
| 5 | 4, 2 | 2th 264 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
| 6 | 5 | eqriv 2727 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 ∅c0 4281 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3436 df-dif 3903 df-nul 4282 df-int 4896 |
| This theorem is referenced by: unissint 4920 uniintsn 4933 rint0 4936 intex 5280 intnex 5281 oev2 8433 fiint 9206 elfi2 9293 fi0 9299 cardmin2 9884 00lsp 20907 cmpfi 23316 ptbasfi 23489 fbssint 23746 fclscmp 23938 zarcmplem 33884 rankeq1o 36184 bj-0int 37114 heibor1lem 37828 ipoglb0 49004 mreclat 49007 |
| Copyright terms: Public domain | W3C validator |