![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > int0 | Structured version Visualization version GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4374 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥 | |
2 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4793 | . . . 4 ⊢ (𝑦 ∈ ∩ ∅ ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝑥) |
4 | 1, 3 | mpbir 232 | . . 3 ⊢ 𝑦 ∈ ∩ ∅ |
5 | 4, 2 | 2th 265 | . 2 ⊢ (𝑦 ∈ ∩ ∅ ↔ 𝑦 ∈ V) |
6 | 5 | eqriv 2792 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 ∀wral 3105 Vcvv 3437 ∅c0 4215 ∩ cint 4786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-v 3439 df-dif 3866 df-nul 4216 df-int 4787 |
This theorem is referenced by: unissint 4810 uniintsn 4823 rint0 4826 intex 5136 intnex 5137 oev2 8004 fiint 8646 elfi2 8729 fi0 8735 cardmin2 9278 00lsp 19448 cmpfi 21705 ptbasfi 21878 fbssint 22135 fclscmp 22327 rankeq1o 33247 bj-0int 34017 heibor1lem 34644 |
Copyright terms: Public domain | W3C validator |