![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inxpssres | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.) |
Ref | Expression |
---|---|
inxpssres | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4004 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssv 4006 | . . . 4 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5691 | . . . 4 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) | |
4 | 1, 2, 3 | mp2an 689 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
5 | sslin 4234 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)) |
7 | df-res 5688 | . 2 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
8 | 6, 7 | sseqtrri 4019 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 × cxp 5674 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-in 3955 df-ss 3965 df-opab 5211 df-xp 5682 df-res 5688 |
This theorem is referenced by: ssrnres 6177 idreseqidinxp 37482 refrelsredund4 37806 refrelredund4 37809 |
Copyright terms: Public domain | W3C validator |