MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxpssres Structured version   Visualization version   GIF version

Theorem inxpssres 5717
Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.)
Assertion
Ref Expression
inxpssres (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅𝐴)

Proof of Theorem inxpssres
StepHypRef Expression
1 ssid 4031 . . . 4 𝐴𝐴
2 ssv 4033 . . . 4 𝐵 ⊆ V
3 xpss12 5715 . . . 4 ((𝐴𝐴𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V))
41, 2, 3mp2an 691 . . 3 (𝐴 × 𝐵) ⊆ (𝐴 × V)
5 sslin 4264 . . 3 ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)))
64, 5ax-mp 5 . 2 (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))
7 df-res 5712 . 2 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
86, 7sseqtrri 4046 1 (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3488  cin 3975  wss 3976   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  ssrnres  6209  idreseqidinxp  38265  refrelsredund4  38588  refrelredund4  38591
  Copyright terms: Public domain W3C validator