MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxpssres Structured version   Visualization version   GIF version

Theorem inxpssres 5631
Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.)
Assertion
Ref Expression
inxpssres (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅𝐴)

Proof of Theorem inxpssres
StepHypRef Expression
1 ssid 3952 . . . 4 𝐴𝐴
2 ssv 3954 . . . 4 𝐵 ⊆ V
3 xpss12 5629 . . . 4 ((𝐴𝐴𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V))
41, 2, 3mp2an 692 . . 3 (𝐴 × 𝐵) ⊆ (𝐴 × V)
5 sslin 4190 . . 3 ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)))
64, 5ax-mp 5 . 2 (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))
7 df-res 5626 . 2 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
86, 7sseqtrri 3979 1 (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cin 3896  wss 3897   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  ssrnres  6125  idreseqidinxp  38357  refrelsredund4  38738  refrelredund4  38741
  Copyright terms: Public domain W3C validator