Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inxpssres | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.) |
Ref | Expression |
---|---|
inxpssres | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssv 3941 | . . . 4 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5595 | . . . 4 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
5 | sslin 4165 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)) |
7 | df-res 5592 | . 2 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
8 | 6, 7 | sseqtrri 3954 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: ssrnres 6070 idreseqidinxp 36372 refrelsredund4 36672 refrelredund4 36675 |
Copyright terms: Public domain | W3C validator |