![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inxpssres | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.) |
Ref | Expression |
---|---|
inxpssres | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4000 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssv 4002 | . . . 4 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5687 | . . . 4 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) | |
4 | 1, 2, 3 | mp2an 691 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
5 | sslin 4230 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)) |
7 | df-res 5684 | . 2 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
8 | 6, 7 | sseqtrri 4015 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3470 ∩ cin 3944 ⊆ wss 3945 × cxp 5670 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-in 3952 df-ss 3962 df-opab 5205 df-xp 5678 df-res 5684 |
This theorem is referenced by: ssrnres 6176 idreseqidinxp 37775 refrelsredund4 38098 refrelredund4 38101 |
Copyright terms: Public domain | W3C validator |