Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inxpssres | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.) |
Ref | Expression |
---|---|
inxpssres | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3909 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssv 3911 | . . . 4 ⊢ 𝐵 ⊆ V | |
3 | xpss12 5550 | . . . 4 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) | |
4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
5 | sslin 4135 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)) |
7 | df-res 5547 | . 2 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
8 | 6, 7 | sseqtrri 3924 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3400 ∩ cin 3852 ⊆ wss 3853 × cxp 5533 ↾ cres 5537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-rab 3063 df-v 3402 df-in 3860 df-ss 3870 df-opab 5103 df-xp 5541 df-res 5547 |
This theorem is referenced by: ssrnres 6020 idreseqidinxp 36101 refrelsredund4 36401 refrelredund4 36404 |
Copyright terms: Public domain | W3C validator |