| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inxpssres | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| inxpssres | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssv 3971 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5653 | . . . 4 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
| 5 | sslin 4206 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)) |
| 7 | df-res 5650 | . 2 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
| 8 | 6, 7 | sseqtrri 3996 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: ssrnres 6151 idreseqidinxp 38297 refrelsredund4 38623 refrelredund4 38626 |
| Copyright terms: Public domain | W3C validator |