| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inxpssres | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a subclass of restriction. (Contributed by Peter Mazsa, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| inxpssres | ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssv 3988 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 3 | xpss12 5674 | . . . 4 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
| 5 | sslin 4223 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V))) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ∩ (𝐴 × V)) |
| 7 | df-res 5671 | . 2 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
| 8 | 6, 7 | sseqtrri 4013 | 1 ⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝑅 ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 × cxp 5657 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-opab 5187 df-xp 5665 df-res 5671 |
| This theorem is referenced by: ssrnres 6172 idreseqidinxp 38332 refrelsredund4 38655 refrelredund4 38658 |
| Copyright terms: Public domain | W3C validator |