Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idreseqidinxp | Structured version Visualization version GIF version |
Description: Condition for the identity restriction to be equal to the identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.) |
Ref | Expression |
---|---|
idreseqidinxp | ⊢ (𝐴 ⊆ 𝐵 → ( I ∩ (𝐴 × 𝐵)) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxpssres 5597 | . . 3 ⊢ ( I ∩ (𝐴 × 𝐵)) ⊆ ( I ↾ 𝐴) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ∩ (𝐴 × 𝐵)) ⊆ ( I ↾ 𝐴)) |
3 | idresssidinxp 36371 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) | |
4 | 2, 3 | eqssd 3934 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( I ∩ (𝐴 × 𝐵)) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 I cid 5479 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: symrefref2 36604 |
Copyright terms: Public domain | W3C validator |