![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idreseqidinxp | Structured version Visualization version GIF version |
Description: Condition for the identity restriction to be equal to the identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018.) |
Ref | Expression |
---|---|
idreseqidinxp | ⊢ (𝐴 ⊆ 𝐵 → ( I ∩ (𝐴 × 𝐵)) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxpssres 5421 | . . 3 ⊢ ( I ∩ (𝐴 × 𝐵)) ⊆ ( I ↾ 𝐴) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ∩ (𝐴 × 𝐵)) ⊆ ( I ↾ 𝐴)) |
3 | idresssidinxp 35043 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴) ⊆ ( I ∩ (𝐴 × 𝐵))) | |
4 | 2, 3 | eqssd 3870 | 1 ⊢ (𝐴 ⊆ 𝐵 → ( I ∩ (𝐴 × 𝐵)) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∩ cin 3823 ⊆ wss 3824 I cid 5308 × cxp 5402 ↾ cres 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-br 4927 df-opab 4989 df-id 5309 df-xp 5410 df-rel 5411 df-res 5416 |
This theorem is referenced by: symrefref2 35277 |
Copyright terms: Public domain | W3C validator |