Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  8gbe Structured version   Visualization version   GIF version

Theorem 8gbe 46951
Description: 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
8gbe 8 ∈ GoldbachEven

Proof of Theorem 8gbe
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 8even 46891 . 2 8 ∈ Even
2 5prm 17043 . . 3 5 ∈ ℙ
3 3prm 16630 . . 3 3 ∈ ℙ
4 5odd 46888 . . . 4 5 ∈ Odd
5 3odd 46886 . . . 4 3 ∈ Odd
6 5p3e8 12367 . . . . 5 (5 + 3) = 8
76eqcomi 2733 . . . 4 8 = (5 + 3)
84, 5, 73pm3.2i 1336 . . 3 (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))
9 eleq1 2813 . . . . 5 (𝑝 = 5 → (𝑝 ∈ Odd ↔ 5 ∈ Odd ))
10 biidd 262 . . . . 5 (𝑝 = 5 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd ))
11 oveq1 7409 . . . . . 6 (𝑝 = 5 → (𝑝 + 𝑞) = (5 + 𝑞))
1211eqeq2d 2735 . . . . 5 (𝑝 = 5 → (8 = (𝑝 + 𝑞) ↔ 8 = (5 + 𝑞)))
139, 10, 123anbi123d 1432 . . . 4 (𝑝 = 5 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)) ↔ (5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞))))
14 biidd 262 . . . . 5 (𝑞 = 3 → (5 ∈ Odd ↔ 5 ∈ Odd ))
15 eleq1 2813 . . . . 5 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
16 oveq2 7410 . . . . . 6 (𝑞 = 3 → (5 + 𝑞) = (5 + 3))
1716eqeq2d 2735 . . . . 5 (𝑞 = 3 → (8 = (5 + 𝑞) ↔ 8 = (5 + 3)))
1814, 15, 173anbi123d 1432 . . . 4 (𝑞 = 3 → ((5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞)) ↔ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))))
1913, 18rspc2ev 3617 . . 3 ((5 ∈ ℙ ∧ 3 ∈ ℙ ∧ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)))
202, 3, 8, 19mp3an 1457 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞))
21 isgbe 46929 . 2 (8 ∈ GoldbachEven ↔ (8 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞))))
221, 20, 21mpbir2an 708 1 8 ∈ GoldbachEven
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1533  wcel 2098  wrex 3062  (class class class)co 7402   + caddc 11110  3c3 12266  5c5 12268  8c8 12271  cprime 16607   Even ceven 46802   Odd codd 46803   GoldbachEven cgbe 46923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-rp 12973  df-fz 13483  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-dvds 16197  df-prm 16608  df-even 46804  df-odd 46805  df-gbe 46926
This theorem is referenced by:  nnsum3primesle9  46972
  Copyright terms: Public domain W3C validator