| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8gbe | Structured version Visualization version GIF version | ||
| Description: 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| 8gbe | ⊢ 8 ∈ GoldbachEven |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8even 47707 | . 2 ⊢ 8 ∈ Even | |
| 2 | 5prm 17055 | . . 3 ⊢ 5 ∈ ℙ | |
| 3 | 3prm 16640 | . . 3 ⊢ 3 ∈ ℙ | |
| 4 | 5odd 47704 | . . . 4 ⊢ 5 ∈ Odd | |
| 5 | 3odd 47702 | . . . 4 ⊢ 3 ∈ Odd | |
| 6 | 5p3e8 12314 | . . . . 5 ⊢ (5 + 3) = 8 | |
| 7 | 6 | eqcomi 2738 | . . . 4 ⊢ 8 = (5 + 3) |
| 8 | 4, 5, 7 | 3pm3.2i 1340 | . . 3 ⊢ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3)) |
| 9 | eleq1 2816 | . . . . 5 ⊢ (𝑝 = 5 → (𝑝 ∈ Odd ↔ 5 ∈ Odd )) | |
| 10 | biidd 262 | . . . . 5 ⊢ (𝑝 = 5 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd )) | |
| 11 | oveq1 7376 | . . . . . 6 ⊢ (𝑝 = 5 → (𝑝 + 𝑞) = (5 + 𝑞)) | |
| 12 | 11 | eqeq2d 2740 | . . . . 5 ⊢ (𝑝 = 5 → (8 = (𝑝 + 𝑞) ↔ 8 = (5 + 𝑞))) |
| 13 | 9, 10, 12 | 3anbi123d 1438 | . . . 4 ⊢ (𝑝 = 5 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)) ↔ (5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞)))) |
| 14 | biidd 262 | . . . . 5 ⊢ (𝑞 = 3 → (5 ∈ Odd ↔ 5 ∈ Odd )) | |
| 15 | eleq1 2816 | . . . . 5 ⊢ (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd )) | |
| 16 | oveq2 7377 | . . . . . 6 ⊢ (𝑞 = 3 → (5 + 𝑞) = (5 + 3)) | |
| 17 | 16 | eqeq2d 2740 | . . . . 5 ⊢ (𝑞 = 3 → (8 = (5 + 𝑞) ↔ 8 = (5 + 3))) |
| 18 | 14, 15, 17 | 3anbi123d 1438 | . . . 4 ⊢ (𝑞 = 3 → ((5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞)) ↔ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3)))) |
| 19 | 13, 18 | rspc2ev 3598 | . . 3 ⊢ ((5 ∈ ℙ ∧ 3 ∈ ℙ ∧ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞))) |
| 20 | 2, 3, 8, 19 | mp3an 1463 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)) |
| 21 | isgbe 47745 | . 2 ⊢ (8 ∈ GoldbachEven ↔ (8 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)))) | |
| 22 | 1, 20, 21 | mpbir2an 711 | 1 ⊢ 8 ∈ GoldbachEven |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7369 + caddc 11047 3c3 12218 5c5 12220 8c8 12223 ℙcprime 16617 Even ceven 47618 Odd codd 47619 GoldbachEven cgbe 47739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 df-even 47620 df-odd 47621 df-gbe 47742 |
| This theorem is referenced by: nnsum3primesle9 47788 |
| Copyright terms: Public domain | W3C validator |