| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8gbe | Structured version Visualization version GIF version | ||
| Description: 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| 8gbe | ⊢ 8 ∈ GoldbachEven |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8even 47718 | . 2 ⊢ 8 ∈ Even | |
| 2 | 5prm 17086 | . . 3 ⊢ 5 ∈ ℙ | |
| 3 | 3prm 16671 | . . 3 ⊢ 3 ∈ ℙ | |
| 4 | 5odd 47715 | . . . 4 ⊢ 5 ∈ Odd | |
| 5 | 3odd 47713 | . . . 4 ⊢ 3 ∈ Odd | |
| 6 | 5p3e8 12345 | . . . . 5 ⊢ (5 + 3) = 8 | |
| 7 | 6 | eqcomi 2739 | . . . 4 ⊢ 8 = (5 + 3) |
| 8 | 4, 5, 7 | 3pm3.2i 1340 | . . 3 ⊢ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3)) |
| 9 | eleq1 2817 | . . . . 5 ⊢ (𝑝 = 5 → (𝑝 ∈ Odd ↔ 5 ∈ Odd )) | |
| 10 | biidd 262 | . . . . 5 ⊢ (𝑝 = 5 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd )) | |
| 11 | oveq1 7397 | . . . . . 6 ⊢ (𝑝 = 5 → (𝑝 + 𝑞) = (5 + 𝑞)) | |
| 12 | 11 | eqeq2d 2741 | . . . . 5 ⊢ (𝑝 = 5 → (8 = (𝑝 + 𝑞) ↔ 8 = (5 + 𝑞))) |
| 13 | 9, 10, 12 | 3anbi123d 1438 | . . . 4 ⊢ (𝑝 = 5 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)) ↔ (5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞)))) |
| 14 | biidd 262 | . . . . 5 ⊢ (𝑞 = 3 → (5 ∈ Odd ↔ 5 ∈ Odd )) | |
| 15 | eleq1 2817 | . . . . 5 ⊢ (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd )) | |
| 16 | oveq2 7398 | . . . . . 6 ⊢ (𝑞 = 3 → (5 + 𝑞) = (5 + 3)) | |
| 17 | 16 | eqeq2d 2741 | . . . . 5 ⊢ (𝑞 = 3 → (8 = (5 + 𝑞) ↔ 8 = (5 + 3))) |
| 18 | 14, 15, 17 | 3anbi123d 1438 | . . . 4 ⊢ (𝑞 = 3 → ((5 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (5 + 𝑞)) ↔ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3)))) |
| 19 | 13, 18 | rspc2ev 3604 | . . 3 ⊢ ((5 ∈ ℙ ∧ 3 ∈ ℙ ∧ (5 ∈ Odd ∧ 3 ∈ Odd ∧ 8 = (5 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞))) |
| 20 | 2, 3, 8, 19 | mp3an 1463 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)) |
| 21 | isgbe 47756 | . 2 ⊢ (8 ∈ GoldbachEven ↔ (8 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 8 = (𝑝 + 𝑞)))) | |
| 22 | 1, 20, 21 | mpbir2an 711 | 1 ⊢ 8 ∈ GoldbachEven |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 (class class class)co 7390 + caddc 11078 3c3 12249 5c5 12251 8c8 12254 ℙcprime 16648 Even ceven 47629 Odd codd 47630 GoldbachEven cgbe 47750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 df-even 47631 df-odd 47632 df-gbe 47753 |
| This theorem is referenced by: nnsum3primesle9 47799 |
| Copyright terms: Public domain | W3C validator |