| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 6gbe | Structured version Visualization version GIF version | ||
| Description: 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| 6gbe | ⊢ 6 ∈ GoldbachEven |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6even 47644 | . 2 ⊢ 6 ∈ Even | |
| 2 | 3prm 16714 | . . 3 ⊢ 3 ∈ ℙ | |
| 3 | 3odd 47641 | . . . 4 ⊢ 3 ∈ Odd | |
| 4 | gbpart6 47699 | . . . 4 ⊢ 6 = (3 + 3) | |
| 5 | 3, 3, 4 | 3pm3.2i 1339 | . . 3 ⊢ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3)) |
| 6 | eleq1 2821 | . . . . 5 ⊢ (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd )) | |
| 7 | biidd 262 | . . . . 5 ⊢ (𝑝 = 3 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd )) | |
| 8 | oveq1 7421 | . . . . . 6 ⊢ (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞)) | |
| 9 | 8 | eqeq2d 2745 | . . . . 5 ⊢ (𝑝 = 3 → (6 = (𝑝 + 𝑞) ↔ 6 = (3 + 𝑞))) |
| 10 | 6, 7, 9 | 3anbi123d 1437 | . . . 4 ⊢ (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞)))) |
| 11 | biidd 262 | . . . . 5 ⊢ (𝑞 = 3 → (3 ∈ Odd ↔ 3 ∈ Odd )) | |
| 12 | eleq1 2821 | . . . . 5 ⊢ (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd )) | |
| 13 | oveq2 7422 | . . . . . 6 ⊢ (𝑞 = 3 → (3 + 𝑞) = (3 + 3)) | |
| 14 | 13 | eqeq2d 2745 | . . . . 5 ⊢ (𝑞 = 3 → (6 = (3 + 𝑞) ↔ 6 = (3 + 3))) |
| 15 | 11, 12, 14 | 3anbi123d 1437 | . . . 4 ⊢ (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞)) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3)))) |
| 16 | 10, 15 | rspc2ev 3619 | . . 3 ⊢ ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))) |
| 17 | 2, 2, 5, 16 | mp3an 1462 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)) |
| 18 | isgbe 47684 | . 2 ⊢ (6 ∈ GoldbachEven ↔ (6 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)))) | |
| 19 | 1, 17, 18 | mpbir2an 711 | 1 ⊢ 6 ∈ GoldbachEven |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 (class class class)co 7414 + caddc 11141 3c3 12305 6c6 12308 ℙcprime 16691 Even ceven 47557 Odd codd 47558 GoldbachEven cgbe 47678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-dvds 16274 df-prm 16692 df-even 47559 df-odd 47560 df-gbe 47681 |
| This theorem is referenced by: nnsum3primesle9 47727 |
| Copyright terms: Public domain | W3C validator |