Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  6gbe Structured version   Visualization version   GIF version

Theorem 6gbe 47870
Description: 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
6gbe 6 ∈ GoldbachEven

Proof of Theorem 6gbe
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6even 47810 . 2 6 ∈ Even
2 3prm 16605 . . 3 3 ∈ ℙ
3 3odd 47807 . . . 4 3 ∈ Odd
4 gbpart6 47865 . . . 4 6 = (3 + 3)
53, 3, 43pm3.2i 1340 . . 3 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))
6 eleq1 2819 . . . . 5 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
7 biidd 262 . . . . 5 (𝑝 = 3 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd ))
8 oveq1 7353 . . . . . 6 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
98eqeq2d 2742 . . . . 5 (𝑝 = 3 → (6 = (𝑝 + 𝑞) ↔ 6 = (3 + 𝑞)))
106, 7, 93anbi123d 1438 . . . 4 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞))))
11 biidd 262 . . . . 5 (𝑞 = 3 → (3 ∈ Odd ↔ 3 ∈ Odd ))
12 eleq1 2819 . . . . 5 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
13 oveq2 7354 . . . . . 6 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
1413eqeq2d 2742 . . . . 5 (𝑞 = 3 → (6 = (3 + 𝑞) ↔ 6 = (3 + 3)))
1511, 12, 143anbi123d 1438 . . . 4 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞)) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))))
1610, 15rspc2ev 3585 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)))
172, 2, 5, 16mp3an 1463 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))
18 isgbe 47850 . 2 (6 ∈ GoldbachEven ↔ (6 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))))
191, 17, 18mpbir2an 711 1 6 ∈ GoldbachEven
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7346   + caddc 11009  3c3 12181  6c6 12184  cprime 16582   Even ceven 47723   Odd codd 47724   GoldbachEven cgbe 47844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-even 47725  df-odd 47726  df-gbe 47847
This theorem is referenced by:  nnsum3primesle9  47893
  Copyright terms: Public domain W3C validator