Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbegt5 Structured version   Visualization version   GIF version

Theorem gbegt5 47792
Description: Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbegt5 (𝑍 ∈ GoldbachEven → 5 < 𝑍)

Proof of Theorem gbegt5
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 47782 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
2 oddprmuzge3 47747 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
32ancoms 458 . . . . . . . . . . . 12 ((𝑝 ∈ Odd ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘3))
4 oddprmuzge3 47747 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
54ancoms 458 . . . . . . . . . . . 12 ((𝑞 ∈ Odd ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ (ℤ‘3))
6 eluz2 12733 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝))
7 eluz2 12733 . . . . . . . . . . . . . . 15 (𝑞 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞))
8 zre 12467 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
9 zre 12467 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
10 3re 12200 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
1110, 10pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 ∈ ℝ ∧ 3 ∈ ℝ)
12 pm3.22 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
13 le2add 11594 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
1411, 12, 13sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
1514ancomsd 465 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → (3 + 3) ≤ (𝑝 + 𝑞)))
16 3p3e6 12267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 + 3) = 6
1716breq1i 5093 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((3 + 3) ≤ (𝑝 + 𝑞) ↔ 6 ≤ (𝑝 + 𝑞))
18 5lt6 12296 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 < 6
19 5re 12207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 5 ∈ ℝ)
21 6re 12210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 6 ∈ ℝ)
23 readdcl 11084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (𝑝 + 𝑞) ∈ ℝ)
2423ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑝 + 𝑞) ∈ ℝ)
25 ltletr 11200 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ (𝑝 + 𝑞) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ (𝑝 + 𝑞)) → 5 < (𝑝 + 𝑞)))
2620, 22, 24, 25syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((5 < 6 ∧ 6 ≤ (𝑝 + 𝑞)) → 5 < (𝑝 + 𝑞)))
2718, 26mpani 696 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (6 ≤ (𝑝 + 𝑞) → 5 < (𝑝 + 𝑞)))
2817, 27biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 + 3) ≤ (𝑝 + 𝑞) → 5 < (𝑝 + 𝑞)))
2915, 28syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞)))
308, 9, 29syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞 ∈ ℤ ∧ 𝑝 ∈ ℤ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞)))
3130ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞))))
3231adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℤ → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞))))
3332com23 86 . . . . . . . . . . . . . . . . . . . 20 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))
3433exp4b 430 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℤ → (𝑞 ∈ ℤ → (3 ≤ 𝑞 → (3 ≤ 𝑝 → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))))
35343imp 1110 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → (3 ≤ 𝑝 → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))
3635com13 88 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℤ → (3 ≤ 𝑝 → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞))))
3736imp 406 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞)))
38373adant1 1130 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞)))
397, 38biimtrid 242 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → (𝑞 ∈ (ℤ‘3) → 5 < (𝑝 + 𝑞)))
406, 39sylbi 217 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘3) → (𝑞 ∈ (ℤ‘3) → 5 < (𝑝 + 𝑞)))
4140imp 406 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 5 < (𝑝 + 𝑞))
423, 5, 41syl2an 596 . . . . . . . . . . 11 (((𝑝 ∈ Odd ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ Odd ∧ 𝑞 ∈ ℙ)) → 5 < (𝑝 + 𝑞))
4342an4s 660 . . . . . . . . . 10 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → 5 < (𝑝 + 𝑞))
4443ex 412 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 5 < (𝑝 + 𝑞)))
45443adant3 1132 . . . . . . . 8 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 5 < (𝑝 + 𝑞)))
4645impcom 407 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < (𝑝 + 𝑞))
47 breq2 5090 . . . . . . . . 9 (𝑍 = (𝑝 + 𝑞) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
48473ad2ant3 1135 . . . . . . . 8 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
4948adantl 481 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
5046, 49mpbird 257 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < 𝑍)
5150ex 412 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍))
5251a1i 11 . . . 4 (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍)))
5352rexlimdvv 3188 . . 3 (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍))
5453imp 406 . 2 ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < 𝑍)
551, 54sylbi 217 1 (𝑍 ∈ GoldbachEven → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000   + caddc 11004   < clt 11141  cle 11142  3c3 12176  5c5 12178  6c6 12179  cz 12463  cuz 12727  cprime 16577   Even ceven 47655   Odd codd 47656   GoldbachEven cgbe 47776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-prm 16578  df-even 47657  df-odd 47658  df-gbe 47779
This theorem is referenced by:  gbege6  47796
  Copyright terms: Public domain W3C validator