Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbegt5 Structured version   Visualization version   GIF version

Theorem gbegt5 47635
Description: Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbegt5 (𝑍 ∈ GoldbachEven → 5 < 𝑍)

Proof of Theorem gbegt5
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 47625 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
2 oddprmuzge3 47590 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
32ancoms 458 . . . . . . . . . . . 12 ((𝑝 ∈ Odd ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘3))
4 oddprmuzge3 47590 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
54ancoms 458 . . . . . . . . . . . 12 ((𝑞 ∈ Odd ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ (ℤ‘3))
6 eluz2 12909 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝))
7 eluz2 12909 . . . . . . . . . . . . . . 15 (𝑞 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞))
8 zre 12643 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
9 zre 12643 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
10 3re 12373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
1110, 10pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 ∈ ℝ ∧ 3 ∈ ℝ)
12 pm3.22 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
13 le2add 11772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
1411, 12, 13sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
1514ancomsd 465 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → (3 + 3) ≤ (𝑝 + 𝑞)))
16 3p3e6 12445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 + 3) = 6
1716breq1i 5173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((3 + 3) ≤ (𝑝 + 𝑞) ↔ 6 ≤ (𝑝 + 𝑞))
18 5lt6 12474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 < 6
19 5re 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 5 ∈ ℝ)
21 6re 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 6 ∈ ℝ)
23 readdcl 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (𝑝 + 𝑞) ∈ ℝ)
2423ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑝 + 𝑞) ∈ ℝ)
25 ltletr 11382 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ (𝑝 + 𝑞) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ (𝑝 + 𝑞)) → 5 < (𝑝 + 𝑞)))
2620, 22, 24, 25syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((5 < 6 ∧ 6 ≤ (𝑝 + 𝑞)) → 5 < (𝑝 + 𝑞)))
2718, 26mpani 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (6 ≤ (𝑝 + 𝑞) → 5 < (𝑝 + 𝑞)))
2817, 27biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 + 3) ≤ (𝑝 + 𝑞) → 5 < (𝑝 + 𝑞)))
2915, 28syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞)))
308, 9, 29syl2an 595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞 ∈ ℤ ∧ 𝑝 ∈ ℤ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞)))
3130ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞))))
3231adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℤ → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞))))
3332com23 86 . . . . . . . . . . . . . . . . . . . 20 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))
3433exp4b 430 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℤ → (𝑞 ∈ ℤ → (3 ≤ 𝑞 → (3 ≤ 𝑝 → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))))
35343imp 1111 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → (3 ≤ 𝑝 → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))
3635com13 88 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℤ → (3 ≤ 𝑝 → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞))))
3736imp 406 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞)))
38373adant1 1130 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞)))
397, 38biimtrid 242 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → (𝑞 ∈ (ℤ‘3) → 5 < (𝑝 + 𝑞)))
406, 39sylbi 217 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘3) → (𝑞 ∈ (ℤ‘3) → 5 < (𝑝 + 𝑞)))
4140imp 406 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 5 < (𝑝 + 𝑞))
423, 5, 41syl2an 595 . . . . . . . . . . 11 (((𝑝 ∈ Odd ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ Odd ∧ 𝑞 ∈ ℙ)) → 5 < (𝑝 + 𝑞))
4342an4s 659 . . . . . . . . . 10 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → 5 < (𝑝 + 𝑞))
4443ex 412 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 5 < (𝑝 + 𝑞)))
45443adant3 1132 . . . . . . . 8 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 5 < (𝑝 + 𝑞)))
4645impcom 407 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < (𝑝 + 𝑞))
47 breq2 5170 . . . . . . . . 9 (𝑍 = (𝑝 + 𝑞) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
48473ad2ant3 1135 . . . . . . . 8 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
4948adantl 481 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
5046, 49mpbird 257 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < 𝑍)
5150ex 412 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍))
5251a1i 11 . . . 4 (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍)))
5352rexlimdvv 3218 . . 3 (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍))
5453imp 406 . 2 ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < 𝑍)
551, 54sylbi 217 1 (𝑍 ∈ GoldbachEven → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183   + caddc 11187   < clt 11324  cle 11325  3c3 12349  5c5 12351  6c6 12352  cz 12639  cuz 12903  cprime 16718   Even ceven 47498   Odd codd 47499   GoldbachEven cgbe 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-even 47500  df-odd 47501  df-gbe 47622
This theorem is referenced by:  gbege6  47639
  Copyright terms: Public domain W3C validator