Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbalt Structured version   Visualization version   GIF version

Theorem sbgoldbalt 46528
Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbalt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞

Proof of Theorem sbgoldbalt
StepHypRef Expression
1 2z 12596 . . . . . 6 2 ∈ ℤ
2 evenz 46377 . . . . . 6 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
3 zltp1le 12614 . . . . . 6 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
41, 2, 3sylancr 587 . . . . 5 (𝑛 ∈ Even → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
5 2p1e3 12356 . . . . . . 7 (2 + 1) = 3
65breq1i 5155 . . . . . 6 ((2 + 1) ≤ 𝑛 ↔ 3 ≤ 𝑛)
7 3re 12294 . . . . . . . . 9 3 ∈ ℝ
87a1i 11 . . . . . . . 8 (𝑛 ∈ Even → 3 ∈ ℝ)
92zred 12668 . . . . . . . 8 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
108, 9leloed 11359 . . . . . . 7 (𝑛 ∈ Even → (3 ≤ 𝑛 ↔ (3 < 𝑛 ∨ 3 = 𝑛)))
11 3z 12597 . . . . . . . . . . . 12 3 ∈ ℤ
12 zltp1le 12614 . . . . . . . . . . . 12 ((3 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
1311, 2, 12sylancr 587 . . . . . . . . . . 11 (𝑛 ∈ Even → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
14 3p1e4 12359 . . . . . . . . . . . . 13 (3 + 1) = 4
1514breq1i 5155 . . . . . . . . . . . 12 ((3 + 1) ≤ 𝑛 ↔ 4 ≤ 𝑛)
16 4re 12298 . . . . . . . . . . . . . . 15 4 ∈ ℝ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ Even → 4 ∈ ℝ)
1817, 9leloed 11359 . . . . . . . . . . . . 13 (𝑛 ∈ Even → (4 ≤ 𝑛 ↔ (4 < 𝑛 ∨ 4 = 𝑛)))
19 pm3.35 801 . . . . . . . . . . . . . . . . . 18 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → 𝑛 ∈ GoldbachEven )
20 isgbe 46498 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachEven ↔ (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
21 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞)))
2322reximdva 3168 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2423reximdva 3168 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2524imp 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2620, 25sylbi 216 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachEven → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2726a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ GoldbachEven → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2819, 27syl 17 . . . . . . . . . . . . . . . . 17 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2928ex 413 . . . . . . . . . . . . . . . 16 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
3029com23 86 . . . . . . . . . . . . . . 15 (4 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
31 2prm 16631 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
32 2p2e4 12349 . . . . . . . . . . . . . . . . . . . 20 (2 + 2) = 4
3332eqcomi 2741 . . . . . . . . . . . . . . . . . . 19 4 = (2 + 2)
34 rspceov 7458 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ 4 = (2 + 2)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞))
3531, 31, 33, 34mp3an 1461 . . . . . . . . . . . . . . . . . 18 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞)
36 eqeq1 2736 . . . . . . . . . . . . . . . . . . 19 (4 = 𝑛 → (4 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑝 + 𝑞)))
37362rexbidv 3219 . . . . . . . . . . . . . . . . . 18 (4 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
3835, 37mpbii 232 . . . . . . . . . . . . . . . . 17 (4 = 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
3938a1d 25 . . . . . . . . . . . . . . . 16 (4 = 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
4039a1d 25 . . . . . . . . . . . . . . 15 (4 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4130, 40jaoi 855 . . . . . . . . . . . . . 14 ((4 < 𝑛 ∨ 4 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4241com12 32 . . . . . . . . . . . . 13 (𝑛 ∈ Even → ((4 < 𝑛 ∨ 4 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4318, 42sylbid 239 . . . . . . . . . . . 12 (𝑛 ∈ Even → (4 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4415, 43biimtrid 241 . . . . . . . . . . 11 (𝑛 ∈ Even → ((3 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4513, 44sylbid 239 . . . . . . . . . 10 (𝑛 ∈ Even → (3 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4645com12 32 . . . . . . . . 9 (3 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
47 3odd 46455 . . . . . . . . . . . 12 3 ∈ Odd
48 eleq1 2821 . . . . . . . . . . . 12 (3 = 𝑛 → (3 ∈ Odd ↔ 𝑛 ∈ Odd ))
4947, 48mpbii 232 . . . . . . . . . . 11 (3 = 𝑛𝑛 ∈ Odd )
50 oddneven 46391 . . . . . . . . . . 11 (𝑛 ∈ Odd → ¬ 𝑛 ∈ Even )
5149, 50syl 17 . . . . . . . . . 10 (3 = 𝑛 → ¬ 𝑛 ∈ Even )
5251pm2.21d 121 . . . . . . . . 9 (3 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5346, 52jaoi 855 . . . . . . . 8 ((3 < 𝑛 ∨ 3 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5453com12 32 . . . . . . 7 (𝑛 ∈ Even → ((3 < 𝑛 ∨ 3 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5510, 54sylbid 239 . . . . . 6 (𝑛 ∈ Even → (3 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
566, 55biimtrid 241 . . . . 5 (𝑛 ∈ Even → ((2 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
574, 56sylbid 239 . . . 4 (𝑛 ∈ Even → (2 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5857com23 86 . . 3 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
59 2lt4 12389 . . . . . . . 8 2 < 4
60 2re 12288 . . . . . . . . . 10 2 ∈ ℝ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℝ)
62 lttr 11292 . . . . . . . . 9 ((2 ∈ ℝ ∧ 4 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6361, 17, 9, 62syl3anc 1371 . . . . . . . 8 (𝑛 ∈ Even → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6459, 63mpani 694 . . . . . . 7 (𝑛 ∈ Even → (4 < 𝑛 → 2 < 𝑛))
6564imp 407 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → 2 < 𝑛)
66 simpll 765 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ Even )
67 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6867anim1i 615 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
6968adantr 481 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
70 simpll 765 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 ∈ Even ∧ 4 < 𝑛))
7170anim1i 615 . . . . . . . . . . . . . . . 16 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
72 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) ↔ ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
7371, 72sylibr 233 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)))
74 sbgoldbaltlem2 46527 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )))
7569, 73, 74sylc 65 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))
76 simpr 485 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
77 df-3an 1089 . . . . . . . . . . . . . 14 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ 𝑛 = (𝑝 + 𝑞)))
7875, 76, 77sylanbrc 583 . . . . . . . . . . . . 13 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
7978ex 413 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 = (𝑝 + 𝑞) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8079reximdva 3168 . . . . . . . . . . 11 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8180reximdva 3168 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8281imp 407 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
8366, 82jca 512 . . . . . . . 8 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8483ex 413 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))))
8584, 20imbitrrdi 251 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → 𝑛 ∈ GoldbachEven ))
8665, 85embantd 59 . . . . 5 ((𝑛 ∈ Even ∧ 4 < 𝑛) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven ))
8786ex 413 . . . 4 (𝑛 ∈ Even → (4 < 𝑛 → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven )))
8887com23 86 . . 3 (𝑛 ∈ Even → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
8958, 88impbid 211 . 2 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
9089ralbiia 3091 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5148  (class class class)co 7411  cr 11111  1c1 11113   + caddc 11115   < clt 11250  cle 11251  2c2 12269  3c3 12270  4c4 12271  cz 12560  cprime 16610   Even ceven 46371   Odd codd 46372   GoldbachEven cgbe 46492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-seq 13969  df-exp 14030  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200  df-prm 16611  df-even 46373  df-odd 46374  df-gbe 46495
This theorem is referenced by:  sbgoldbb  46529  sbgoldbmb  46533
  Copyright terms: Public domain W3C validator