Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbalt Structured version   Visualization version   GIF version

Theorem sbgoldbalt 44299
Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbalt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞

Proof of Theorem sbgoldbalt
StepHypRef Expression
1 2z 12002 . . . . . 6 2 ∈ ℤ
2 evenz 44148 . . . . . 6 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
3 zltp1le 12020 . . . . . 6 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
41, 2, 3sylancr 590 . . . . 5 (𝑛 ∈ Even → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
5 2p1e3 11767 . . . . . . 7 (2 + 1) = 3
65breq1i 5037 . . . . . 6 ((2 + 1) ≤ 𝑛 ↔ 3 ≤ 𝑛)
7 3re 11705 . . . . . . . . 9 3 ∈ ℝ
87a1i 11 . . . . . . . 8 (𝑛 ∈ Even → 3 ∈ ℝ)
92zred 12075 . . . . . . . 8 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
108, 9leloed 10772 . . . . . . 7 (𝑛 ∈ Even → (3 ≤ 𝑛 ↔ (3 < 𝑛 ∨ 3 = 𝑛)))
11 3z 12003 . . . . . . . . . . . 12 3 ∈ ℤ
12 zltp1le 12020 . . . . . . . . . . . 12 ((3 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
1311, 2, 12sylancr 590 . . . . . . . . . . 11 (𝑛 ∈ Even → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
14 3p1e4 11770 . . . . . . . . . . . . 13 (3 + 1) = 4
1514breq1i 5037 . . . . . . . . . . . 12 ((3 + 1) ≤ 𝑛 ↔ 4 ≤ 𝑛)
16 4re 11709 . . . . . . . . . . . . . . 15 4 ∈ ℝ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ Even → 4 ∈ ℝ)
1817, 9leloed 10772 . . . . . . . . . . . . 13 (𝑛 ∈ Even → (4 ≤ 𝑛 ↔ (4 < 𝑛 ∨ 4 = 𝑛)))
19 pm3.35 802 . . . . . . . . . . . . . . . . . 18 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → 𝑛 ∈ GoldbachEven )
20 isgbe 44269 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachEven ↔ (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
21 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞)))
2322reximdva 3233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2423reximdva 3233 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2524imp 410 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2620, 25sylbi 220 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachEven → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2726a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ GoldbachEven → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2819, 27syl 17 . . . . . . . . . . . . . . . . 17 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2928ex 416 . . . . . . . . . . . . . . . 16 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
3029com23 86 . . . . . . . . . . . . . . 15 (4 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
31 2prm 16026 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
32 2p2e4 11760 . . . . . . . . . . . . . . . . . . . 20 (2 + 2) = 4
3332eqcomi 2807 . . . . . . . . . . . . . . . . . . 19 4 = (2 + 2)
34 rspceov 7182 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ 4 = (2 + 2)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞))
3531, 31, 33, 34mp3an 1458 . . . . . . . . . . . . . . . . . 18 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞)
36 eqeq1 2802 . . . . . . . . . . . . . . . . . . 19 (4 = 𝑛 → (4 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑝 + 𝑞)))
37362rexbidv 3259 . . . . . . . . . . . . . . . . . 18 (4 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
3835, 37mpbii 236 . . . . . . . . . . . . . . . . 17 (4 = 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
3938a1d 25 . . . . . . . . . . . . . . . 16 (4 = 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
4039a1d 25 . . . . . . . . . . . . . . 15 (4 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4130, 40jaoi 854 . . . . . . . . . . . . . 14 ((4 < 𝑛 ∨ 4 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4241com12 32 . . . . . . . . . . . . 13 (𝑛 ∈ Even → ((4 < 𝑛 ∨ 4 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4318, 42sylbid 243 . . . . . . . . . . . 12 (𝑛 ∈ Even → (4 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4415, 43syl5bi 245 . . . . . . . . . . 11 (𝑛 ∈ Even → ((3 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4513, 44sylbid 243 . . . . . . . . . 10 (𝑛 ∈ Even → (3 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4645com12 32 . . . . . . . . 9 (3 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
47 3odd 44226 . . . . . . . . . . . 12 3 ∈ Odd
48 eleq1 2877 . . . . . . . . . . . 12 (3 = 𝑛 → (3 ∈ Odd ↔ 𝑛 ∈ Odd ))
4947, 48mpbii 236 . . . . . . . . . . 11 (3 = 𝑛𝑛 ∈ Odd )
50 oddneven 44162 . . . . . . . . . . 11 (𝑛 ∈ Odd → ¬ 𝑛 ∈ Even )
5149, 50syl 17 . . . . . . . . . 10 (3 = 𝑛 → ¬ 𝑛 ∈ Even )
5251pm2.21d 121 . . . . . . . . 9 (3 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5346, 52jaoi 854 . . . . . . . 8 ((3 < 𝑛 ∨ 3 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5453com12 32 . . . . . . 7 (𝑛 ∈ Even → ((3 < 𝑛 ∨ 3 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5510, 54sylbid 243 . . . . . 6 (𝑛 ∈ Even → (3 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
566, 55syl5bi 245 . . . . 5 (𝑛 ∈ Even → ((2 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
574, 56sylbid 243 . . . 4 (𝑛 ∈ Even → (2 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5857com23 86 . . 3 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
59 2lt4 11800 . . . . . . . 8 2 < 4
60 2re 11699 . . . . . . . . . 10 2 ∈ ℝ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℝ)
62 lttr 10706 . . . . . . . . 9 ((2 ∈ ℝ ∧ 4 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6361, 17, 9, 62syl3anc 1368 . . . . . . . 8 (𝑛 ∈ Even → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6459, 63mpani 695 . . . . . . 7 (𝑛 ∈ Even → (4 < 𝑛 → 2 < 𝑛))
6564imp 410 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → 2 < 𝑛)
66 simpll 766 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ Even )
67 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6867anim1i 617 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
6968adantr 484 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
70 simpll 766 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 ∈ Even ∧ 4 < 𝑛))
7170anim1i 617 . . . . . . . . . . . . . . . 16 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
72 df-3an 1086 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) ↔ ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
7371, 72sylibr 237 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)))
74 sbgoldbaltlem2 44298 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )))
7569, 73, 74sylc 65 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))
76 simpr 488 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
77 df-3an 1086 . . . . . . . . . . . . . 14 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ 𝑛 = (𝑝 + 𝑞)))
7875, 76, 77sylanbrc 586 . . . . . . . . . . . . 13 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
7978ex 416 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 = (𝑝 + 𝑞) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8079reximdva 3233 . . . . . . . . . . 11 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8180reximdva 3233 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8281imp 410 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
8366, 82jca 515 . . . . . . . 8 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8483ex 416 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))))
8584, 20syl6ibr 255 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → 𝑛 ∈ GoldbachEven ))
8665, 85embantd 59 . . . . 5 ((𝑛 ∈ Even ∧ 4 < 𝑛) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven ))
8786ex 416 . . . 4 (𝑛 ∈ Even → (4 < 𝑛 → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven )))
8887com23 86 . . 3 (𝑛 ∈ Even → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
8958, 88impbid 215 . 2 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
9089ralbiia 3132 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  2c2 11680  3c3 11681  4c4 11682  cz 11969  cprime 16005   Even ceven 44142   Odd codd 44143   GoldbachEven cgbe 44263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006  df-even 44144  df-odd 44145  df-gbe 44266
This theorem is referenced by:  sbgoldbb  44300  sbgoldbmb  44304
  Copyright terms: Public domain W3C validator