Proof of Theorem sbgoldbalt
Step | Hyp | Ref
| Expression |
1 | | 2z 12352 |
. . . . . 6
⊢ 2 ∈
ℤ |
2 | | evenz 45082 |
. . . . . 6
⊢ (𝑛 ∈ Even → 𝑛 ∈
ℤ) |
3 | | zltp1le 12370 |
. . . . . 6
⊢ ((2
∈ ℤ ∧ 𝑛
∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛)) |
4 | 1, 2, 3 | sylancr 587 |
. . . . 5
⊢ (𝑛 ∈ Even → (2 <
𝑛 ↔ (2 + 1) ≤ 𝑛)) |
5 | | 2p1e3 12115 |
. . . . . . 7
⊢ (2 + 1) =
3 |
6 | 5 | breq1i 5081 |
. . . . . 6
⊢ ((2 + 1)
≤ 𝑛 ↔ 3 ≤ 𝑛) |
7 | | 3re 12053 |
. . . . . . . . 9
⊢ 3 ∈
ℝ |
8 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ Even → 3 ∈
ℝ) |
9 | 2 | zred 12426 |
. . . . . . . 8
⊢ (𝑛 ∈ Even → 𝑛 ∈
ℝ) |
10 | 8, 9 | leloed 11118 |
. . . . . . 7
⊢ (𝑛 ∈ Even → (3 ≤
𝑛 ↔ (3 < 𝑛 ∨ 3 = 𝑛))) |
11 | | 3z 12353 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℤ |
12 | | zltp1le 12370 |
. . . . . . . . . . . 12
⊢ ((3
∈ ℤ ∧ 𝑛
∈ ℤ) → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛)) |
13 | 11, 2, 12 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Even → (3 <
𝑛 ↔ (3 + 1) ≤ 𝑛)) |
14 | | 3p1e4 12118 |
. . . . . . . . . . . . 13
⊢ (3 + 1) =
4 |
15 | 14 | breq1i 5081 |
. . . . . . . . . . . 12
⊢ ((3 + 1)
≤ 𝑛 ↔ 4 ≤ 𝑛) |
16 | | 4re 12057 |
. . . . . . . . . . . . . . 15
⊢ 4 ∈
ℝ |
17 | 16 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ Even → 4 ∈
ℝ) |
18 | 17, 9 | leloed 11118 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ Even → (4 ≤
𝑛 ↔ (4 < 𝑛 ∨ 4 = 𝑛))) |
19 | | pm3.35 800 |
. . . . . . . . . . . . . . . . . 18
⊢ ((4 <
𝑛 ∧ (4 < 𝑛 → 𝑛 ∈ GoldbachEven )) → 𝑛 ∈ GoldbachEven
) |
20 | | isgbe 45203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ GoldbachEven ↔
(𝑛 ∈ Even ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
(𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))) |
21 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞)) |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))) |
23 | 22 | reximdva 3203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) →
(∃𝑞 ∈ ℙ
(𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
24 | 23 | reximdva 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ Even →
(∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
(𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
25 | 24 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) |
26 | 20, 25 | sylbi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ GoldbachEven →
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
𝑛 = (𝑝 + 𝑞)) |
27 | 26 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ GoldbachEven →
(𝑛 ∈ Even →
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
𝑛 = (𝑝 + 𝑞))) |
28 | 19, 27 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((4 <
𝑛 ∧ (4 < 𝑛 → 𝑛 ∈ GoldbachEven )) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
29 | 28 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (4 <
𝑛 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
30 | 29 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (4 <
𝑛 → (𝑛 ∈ Even → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
31 | | 2prm 16397 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℙ |
32 | | 2p2e4 12108 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2 + 2) =
4 |
33 | 32 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 = (2 +
2) |
34 | | rspceov 7322 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℙ ∧ 2 ∈ ℙ ∧ 4 = (2 + 2)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞)) |
35 | 31, 31, 33, 34 | mp3an 1460 |
. . . . . . . . . . . . . . . . . 18
⊢
∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ 4 = (𝑝 + 𝑞) |
36 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (4 =
𝑛 → (4 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑝 + 𝑞))) |
37 | 36 | 2rexbidv 3229 |
. . . . . . . . . . . . . . . . . 18
⊢ (4 =
𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
38 | 35, 37 | mpbii 232 |
. . . . . . . . . . . . . . . . 17
⊢ (4 =
𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) |
39 | 38 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (4 =
𝑛 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
40 | 39 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (4 =
𝑛 → (𝑛 ∈ Even → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
41 | 30, 40 | jaoi 854 |
. . . . . . . . . . . . . 14
⊢ ((4 <
𝑛 ∨ 4 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
42 | 41 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ Even → ((4 <
𝑛 ∨ 4 = 𝑛) → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
43 | 18, 42 | sylbid 239 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ Even → (4 ≤
𝑛 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
44 | 15, 43 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Even → ((3 + 1)
≤ 𝑛 → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
45 | 13, 44 | sylbid 239 |
. . . . . . . . . 10
⊢ (𝑛 ∈ Even → (3 <
𝑛 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
46 | 45 | com12 32 |
. . . . . . . . 9
⊢ (3 <
𝑛 → (𝑛 ∈ Even → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
47 | | 3odd 45160 |
. . . . . . . . . . . 12
⊢ 3 ∈
Odd |
48 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (3 =
𝑛 → (3 ∈ Odd
↔ 𝑛 ∈ Odd
)) |
49 | 47, 48 | mpbii 232 |
. . . . . . . . . . 11
⊢ (3 =
𝑛 → 𝑛 ∈ Odd ) |
50 | | oddneven 45096 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Odd → ¬ 𝑛 ∈ Even ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (3 =
𝑛 → ¬ 𝑛 ∈ Even ) |
52 | 51 | pm2.21d 121 |
. . . . . . . . 9
⊢ (3 =
𝑛 → (𝑛 ∈ Even → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
53 | 46, 52 | jaoi 854 |
. . . . . . . 8
⊢ ((3 <
𝑛 ∨ 3 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
54 | 53 | com12 32 |
. . . . . . 7
⊢ (𝑛 ∈ Even → ((3 <
𝑛 ∨ 3 = 𝑛) → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
55 | 10, 54 | sylbid 239 |
. . . . . 6
⊢ (𝑛 ∈ Even → (3 ≤
𝑛 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
56 | 6, 55 | syl5bi 241 |
. . . . 5
⊢ (𝑛 ∈ Even → ((2 + 1)
≤ 𝑛 → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
57 | 4, 56 | sylbid 239 |
. . . 4
⊢ (𝑛 ∈ Even → (2 <
𝑛 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
58 | 57 | com23 86 |
. . 3
⊢ (𝑛 ∈ Even → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
59 | | 2lt4 12148 |
. . . . . . . 8
⊢ 2 <
4 |
60 | | 2re 12047 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
61 | 60 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ Even → 2 ∈
ℝ) |
62 | | lttr 11051 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ 4 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((2 < 4 ∧ 4
< 𝑛) → 2 < 𝑛)) |
63 | 61, 17, 9, 62 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝑛 ∈ Even → ((2 < 4
∧ 4 < 𝑛) → 2
< 𝑛)) |
64 | 59, 63 | mpani 693 |
. . . . . . 7
⊢ (𝑛 ∈ Even → (4 <
𝑛 → 2 < 𝑛)) |
65 | 64 | imp 407 |
. . . . . 6
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛) → 2 < 𝑛) |
66 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ Even ) |
67 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
68 | 67 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑛 ∈ Even
∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) |
70 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 ∈ Even ∧ 4 < 𝑛)) |
71 | 70 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑛 ∈ Even
∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞))) |
72 | | df-3an 1088 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 = (𝑝 + 𝑞)) ↔ ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞))) |
73 | 71, 72 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑛 ∈ Even
∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 = (𝑝 + 𝑞))) |
74 | | sbgoldbaltlem2 45232 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))) |
75 | 69, 73, 74 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
(((((𝑛 ∈ Even
∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )) |
76 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝑛 ∈ Even
∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞)) |
77 | | df-3an 1088 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ 𝑛 = (𝑝 + 𝑞))) |
78 | 75, 76, 77 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝑛 ∈ Even
∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) |
79 | 78 | ex 413 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 = (𝑝 + 𝑞) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))) |
80 | 79 | reximdva 3203 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))) |
81 | 80 | reximdva 3203 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))) |
82 | 81 | imp 407 |
. . . . . . . . 9
⊢ (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) |
83 | 66, 82 | jca 512 |
. . . . . . . 8
⊢ (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))) |
84 | 83 | ex 413 |
. . . . . . 7
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))) |
85 | 84, 20 | syl6ibr 251 |
. . . . . 6
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → 𝑛 ∈ GoldbachEven )) |
86 | 65, 85 | embantd 59 |
. . . . 5
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven )) |
87 | 86 | ex 413 |
. . . 4
⊢ (𝑛 ∈ Even → (4 <
𝑛 → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven ))) |
88 | 87 | com23 86 |
. . 3
⊢ (𝑛 ∈ Even → ((2 <
𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (4 < 𝑛 → 𝑛 ∈ GoldbachEven ))) |
89 | 58, 88 | impbid 211 |
. 2
⊢ (𝑛 ∈ Even → ((4 <
𝑛 → 𝑛 ∈ GoldbachEven ) ↔ (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))) |
90 | 89 | ralbiia 3091 |
1
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔
∀𝑛 ∈ Even (2
< 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |