Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbalt Structured version   Visualization version   GIF version

Theorem sbgoldbalt 47263
Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbalt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞

Proof of Theorem sbgoldbalt
StepHypRef Expression
1 2z 12632 . . . . . 6 2 ∈ ℤ
2 evenz 47112 . . . . . 6 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
3 zltp1le 12650 . . . . . 6 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
41, 2, 3sylancr 585 . . . . 5 (𝑛 ∈ Even → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
5 2p1e3 12392 . . . . . . 7 (2 + 1) = 3
65breq1i 5156 . . . . . 6 ((2 + 1) ≤ 𝑛 ↔ 3 ≤ 𝑛)
7 3re 12330 . . . . . . . . 9 3 ∈ ℝ
87a1i 11 . . . . . . . 8 (𝑛 ∈ Even → 3 ∈ ℝ)
92zred 12704 . . . . . . . 8 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
108, 9leloed 11394 . . . . . . 7 (𝑛 ∈ Even → (3 ≤ 𝑛 ↔ (3 < 𝑛 ∨ 3 = 𝑛)))
11 3z 12633 . . . . . . . . . . . 12 3 ∈ ℤ
12 zltp1le 12650 . . . . . . . . . . . 12 ((3 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
1311, 2, 12sylancr 585 . . . . . . . . . . 11 (𝑛 ∈ Even → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
14 3p1e4 12395 . . . . . . . . . . . . 13 (3 + 1) = 4
1514breq1i 5156 . . . . . . . . . . . 12 ((3 + 1) ≤ 𝑛 ↔ 4 ≤ 𝑛)
16 4re 12334 . . . . . . . . . . . . . . 15 4 ∈ ℝ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ Even → 4 ∈ ℝ)
1817, 9leloed 11394 . . . . . . . . . . . . 13 (𝑛 ∈ Even → (4 ≤ 𝑛 ↔ (4 < 𝑛 ∨ 4 = 𝑛)))
19 pm3.35 801 . . . . . . . . . . . . . . . . . 18 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → 𝑛 ∈ GoldbachEven )
20 isgbe 47233 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachEven ↔ (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
21 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞)))
2322reximdva 3157 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2423reximdva 3157 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2524imp 405 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2620, 25sylbi 216 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachEven → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2726a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ GoldbachEven → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2819, 27syl 17 . . . . . . . . . . . . . . . . 17 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2928ex 411 . . . . . . . . . . . . . . . 16 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
3029com23 86 . . . . . . . . . . . . . . 15 (4 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
31 2prm 16679 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
32 2p2e4 12385 . . . . . . . . . . . . . . . . . . . 20 (2 + 2) = 4
3332eqcomi 2734 . . . . . . . . . . . . . . . . . . 19 4 = (2 + 2)
34 rspceov 7467 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ 4 = (2 + 2)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞))
3531, 31, 33, 34mp3an 1457 . . . . . . . . . . . . . . . . . 18 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞)
36 eqeq1 2729 . . . . . . . . . . . . . . . . . . 19 (4 = 𝑛 → (4 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑝 + 𝑞)))
37362rexbidv 3209 . . . . . . . . . . . . . . . . . 18 (4 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
3835, 37mpbii 232 . . . . . . . . . . . . . . . . 17 (4 = 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
3938a1d 25 . . . . . . . . . . . . . . . 16 (4 = 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
4039a1d 25 . . . . . . . . . . . . . . 15 (4 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4130, 40jaoi 855 . . . . . . . . . . . . . 14 ((4 < 𝑛 ∨ 4 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4241com12 32 . . . . . . . . . . . . 13 (𝑛 ∈ Even → ((4 < 𝑛 ∨ 4 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4318, 42sylbid 239 . . . . . . . . . . . 12 (𝑛 ∈ Even → (4 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4415, 43biimtrid 241 . . . . . . . . . . 11 (𝑛 ∈ Even → ((3 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4513, 44sylbid 239 . . . . . . . . . 10 (𝑛 ∈ Even → (3 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4645com12 32 . . . . . . . . 9 (3 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
47 3odd 47190 . . . . . . . . . . . 12 3 ∈ Odd
48 eleq1 2813 . . . . . . . . . . . 12 (3 = 𝑛 → (3 ∈ Odd ↔ 𝑛 ∈ Odd ))
4947, 48mpbii 232 . . . . . . . . . . 11 (3 = 𝑛𝑛 ∈ Odd )
50 oddneven 47126 . . . . . . . . . . 11 (𝑛 ∈ Odd → ¬ 𝑛 ∈ Even )
5149, 50syl 17 . . . . . . . . . 10 (3 = 𝑛 → ¬ 𝑛 ∈ Even )
5251pm2.21d 121 . . . . . . . . 9 (3 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5346, 52jaoi 855 . . . . . . . 8 ((3 < 𝑛 ∨ 3 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5453com12 32 . . . . . . 7 (𝑛 ∈ Even → ((3 < 𝑛 ∨ 3 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5510, 54sylbid 239 . . . . . 6 (𝑛 ∈ Even → (3 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
566, 55biimtrid 241 . . . . 5 (𝑛 ∈ Even → ((2 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
574, 56sylbid 239 . . . 4 (𝑛 ∈ Even → (2 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5857com23 86 . . 3 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
59 2lt4 12425 . . . . . . . 8 2 < 4
60 2re 12324 . . . . . . . . . 10 2 ∈ ℝ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℝ)
62 lttr 11327 . . . . . . . . 9 ((2 ∈ ℝ ∧ 4 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6361, 17, 9, 62syl3anc 1368 . . . . . . . 8 (𝑛 ∈ Even → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6459, 63mpani 694 . . . . . . 7 (𝑛 ∈ Even → (4 < 𝑛 → 2 < 𝑛))
6564imp 405 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → 2 < 𝑛)
66 simpll 765 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ Even )
67 simpr 483 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6867anim1i 613 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
6968adantr 479 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
70 simpll 765 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 ∈ Even ∧ 4 < 𝑛))
7170anim1i 613 . . . . . . . . . . . . . . . 16 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
72 df-3an 1086 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) ↔ ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
7371, 72sylibr 233 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)))
74 sbgoldbaltlem2 47262 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )))
7569, 73, 74sylc 65 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))
76 simpr 483 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
77 df-3an 1086 . . . . . . . . . . . . . 14 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ 𝑛 = (𝑝 + 𝑞)))
7875, 76, 77sylanbrc 581 . . . . . . . . . . . . 13 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
7978ex 411 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 = (𝑝 + 𝑞) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8079reximdva 3157 . . . . . . . . . . 11 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8180reximdva 3157 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8281imp 405 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
8366, 82jca 510 . . . . . . . 8 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8483ex 411 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))))
8584, 20imbitrrdi 251 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → 𝑛 ∈ GoldbachEven ))
8665, 85embantd 59 . . . . 5 ((𝑛 ∈ Even ∧ 4 < 𝑛) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven ))
8786ex 411 . . . 4 (𝑛 ∈ Even → (4 < 𝑛 → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven )))
8887com23 86 . . 3 (𝑛 ∈ Even → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
8958, 88impbid 211 . 2 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
9089ralbiia 3080 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149  (class class class)co 7419  cr 11144  1c1 11146   + caddc 11148   < clt 11285  cle 11286  2c2 12305  3c3 12306  4c4 12307  cz 12596  cprime 16658   Even ceven 47106   Odd codd 47107   GoldbachEven cgbe 47227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9472  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-seq 14008  df-exp 14068  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-dvds 16243  df-prm 16659  df-even 47108  df-odd 47109  df-gbe 47230
This theorem is referenced by:  sbgoldbb  47264  sbgoldbmb  47268
  Copyright terms: Public domain W3C validator