Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesgbe Structured version   Visualization version   GIF version

Theorem nnsum3primesgbe 45244
Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesgbe (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesgbe
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 45203 . 2 (𝑁 ∈ GoldbachEven ↔ (𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))))
2 2nn 12046 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → 2 ∈ ℕ)
4 oveq2 7283 . . . . . . . . . . 11 (𝑑 = 2 → (1...𝑑) = (1...2))
5 df-2 12036 . . . . . . . . . . . . 13 2 = (1 + 1)
65oveq2i 7286 . . . . . . . . . . . 12 (1...2) = (1...(1 + 1))
7 1z 12350 . . . . . . . . . . . . 13 1 ∈ ℤ
8 fzpr 13311 . . . . . . . . . . . . 13 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
97, 8ax-mp 5 . . . . . . . . . . . 12 (1...(1 + 1)) = {1, (1 + 1)}
10 1p1e2 12098 . . . . . . . . . . . . 13 (1 + 1) = 2
1110preq2i 4673 . . . . . . . . . . . 12 {1, (1 + 1)} = {1, 2}
126, 9, 113eqtri 2770 . . . . . . . . . . 11 (1...2) = {1, 2}
134, 12eqtrdi 2794 . . . . . . . . . 10 (𝑑 = 2 → (1...𝑑) = {1, 2})
1413oveq2d 7291 . . . . . . . . 9 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
15 breq1 5077 . . . . . . . . . 10 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
1613sumeq1d 15413 . . . . . . . . . . 11 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
1716eqeq2d 2749 . . . . . . . . . 10 (𝑑 = 2 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
1815, 17anbi12d 631 . . . . . . . . 9 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
1914, 18rexeqbidv 3337 . . . . . . . 8 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
2019adantl 482 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) ∧ 𝑑 = 2) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
21 1ne2 12181 . . . . . . . . . . . . 13 1 ≠ 2
22 1ex 10971 . . . . . . . . . . . . . 14 1 ∈ V
23 2ex 12050 . . . . . . . . . . . . . 14 2 ∈ V
24 vex 3436 . . . . . . . . . . . . . 14 𝑝 ∈ V
25 vex 3436 . . . . . . . . . . . . . 14 𝑞 ∈ V
2622, 23, 24, 25fpr 7026 . . . . . . . . . . . . 13 (1 ≠ 2 → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
2721, 26mp1i 13 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
28 prssi 4754 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {𝑝, 𝑞} ⊆ ℙ)
2927, 28fssd 6618 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ)
30 prmex 16382 . . . . . . . . . . . . 13 ℙ ∈ V
31 prex 5355 . . . . . . . . . . . . 13 {1, 2} ∈ V
3230, 31pm3.2i 471 . . . . . . . . . . . 12 (ℙ ∈ V ∧ {1, 2} ∈ V)
33 elmapg 8628 . . . . . . . . . . . 12 ((ℙ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3432, 33mp1i 13 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3529, 34mpbird 256 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}))
36 fveq1 6773 . . . . . . . . . . . . . . 15 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3736adantr 481 . . . . . . . . . . . . . 14 ((𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∧ 𝑘 ∈ {1, 2}) → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3837sumeq2dv 15415 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3938eqeq1d 2740 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞) ↔ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
4039anbi2d 629 . . . . . . . . . . 11 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
4140adantl 482 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}) → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
42 prmz 16380 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 16380 . . . . . . . . . . . 12 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 fveq2 6774 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1))
4522, 24fvpr1 7065 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝)
4621, 45ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝
4744, 46eqtrdi 2794 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑝)
48 fveq2 6774 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2))
4923, 25fvpr2 7067 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞)
5021, 49ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞
5148, 50eqtrdi 2794 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑞)
52 zcn 12324 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℂ)
53 zcn 12324 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℂ)
5452, 53anim12i 613 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ))
557, 2pm3.2i 471 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℕ)
5655a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (1 ∈ ℤ ∧ 2 ∈ ℕ))
5721a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → 1 ≠ 2)
5847, 51, 54, 56, 57sumpr 15460 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
5942, 43, 58syl2an 596 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
60 2re 12047 . . . . . . . . . . . 12 2 ∈ ℝ
61 3re 12053 . . . . . . . . . . . 12 3 ∈ ℝ
62 2lt3 12145 . . . . . . . . . . . 12 2 < 3
6360, 61, 62ltleii 11098 . . . . . . . . . . 11 2 ≤ 3
6459, 63jctil 520 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
6535, 41, 64rspcedvd 3563 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
6665adantr 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
67 eqeq1 2742 . . . . . . . . . . . . 13 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ (𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
68 eqcom 2745 . . . . . . . . . . . . 13 ((𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))
6967, 68bitrdi 287 . . . . . . . . . . . 12 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
7069anbi2d 629 . . . . . . . . . . 11 (𝑁 = (𝑝 + 𝑞) → ((2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7170rexbidv 3226 . . . . . . . . . 10 (𝑁 = (𝑝 + 𝑞) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
72713ad2ant3 1134 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7372adantl 482 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7466, 73mpbird 256 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
753, 20, 74rspcedvd 3563 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7675a1d 25 . . . . 5 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7776ex 413 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))))
7877rexlimivv 3221 . . 3 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7978impcom 408 . 2 ((𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
801, 79sylbi 216 1 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  {cpr 4563  cop 4567   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  1c1 10872   + caddc 10874  cle 11010  cn 11973  2c2 12028  3c3 12029  cz 12319  ...cfz 13239  Σcsu 15397  cprime 16376   Even ceven 45076   Odd codd 45077   GoldbachEven cgbe 45197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prm 16377  df-gbe 45200
This theorem is referenced by:  nnsum4primesgbe  45245  nnsum3primesle9  45246  bgoldbnnsum3prm  45256
  Copyright terms: Public domain W3C validator