Step | Hyp | Ref
| Expression |
1 | | isgbe 45172 |
. 2
⊢ (𝑁 ∈ GoldbachEven ↔
(𝑁 ∈ Even ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
(𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)))) |
2 | | 2nn 12046 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
3 | 2 | a1i 11 |
. . . . . . 7
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → 2 ∈ ℕ) |
4 | | oveq2 7279 |
. . . . . . . . . . 11
⊢ (𝑑 = 2 → (1...𝑑) = (1...2)) |
5 | | df-2 12036 |
. . . . . . . . . . . . 13
⊢ 2 = (1 +
1) |
6 | 5 | oveq2i 7282 |
. . . . . . . . . . . 12
⊢ (1...2) =
(1...(1 + 1)) |
7 | | 1z 12350 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
8 | | fzpr 13310 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℤ → (1...(1 + 1)) = {1, (1 + 1)}) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (1...(1 +
1)) = {1, (1 + 1)} |
10 | | 1p1e2 12098 |
. . . . . . . . . . . . 13
⊢ (1 + 1) =
2 |
11 | 10 | preq2i 4679 |
. . . . . . . . . . . 12
⊢ {1, (1 +
1)} = {1, 2} |
12 | 6, 9, 11 | 3eqtri 2772 |
. . . . . . . . . . 11
⊢ (1...2) =
{1, 2} |
13 | 4, 12 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ (𝑑 = 2 → (1...𝑑) = {1, 2}) |
14 | 13 | oveq2d 7287 |
. . . . . . . . 9
⊢ (𝑑 = 2 → (ℙ
↑m (1...𝑑))
= (ℙ ↑m {1, 2})) |
15 | | breq1 5082 |
. . . . . . . . . 10
⊢ (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3)) |
16 | 13 | sumeq1d 15411 |
. . . . . . . . . . 11
⊢ (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)) |
17 | 16 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ (𝑑 = 2 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘))) |
18 | 15, 17 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)))) |
19 | 14, 18 | rexeqbidv 3336 |
. . . . . . . 8
⊢ (𝑑 = 2 → (∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 𝑁 =
Σ𝑘 ∈ {1, 2}
(𝑓‘𝑘)))) |
20 | 19 | adantl 482 |
. . . . . . 7
⊢ ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) ∧ 𝑑 = 2) → (∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 𝑁 =
Σ𝑘 ∈ {1, 2}
(𝑓‘𝑘)))) |
21 | | 1ne2 12181 |
. . . . . . . . . . . . 13
⊢ 1 ≠
2 |
22 | | 1ex 10972 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
23 | | 2ex 12050 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
V |
24 | | vex 3435 |
. . . . . . . . . . . . . 14
⊢ 𝑝 ∈ V |
25 | | vex 3435 |
. . . . . . . . . . . . . 14
⊢ 𝑞 ∈ V |
26 | 22, 23, 24, 25 | fpr 7023 |
. . . . . . . . . . . . 13
⊢ (1 ≠ 2
→ {〈1, 𝑝〉,
〈2, 𝑞〉}:{1,
2}⟶{𝑝, 𝑞}) |
27 | 21, 26 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉}:{1,
2}⟶{𝑝, 𝑞}) |
28 | | prssi 4760 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {𝑝, 𝑞} ⊆ ℙ) |
29 | 27, 28 | fssd 6616 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉}:{1,
2}⟶ℙ) |
30 | | prmex 16380 |
. . . . . . . . . . . . 13
⊢ ℙ
∈ V |
31 | | prex 5359 |
. . . . . . . . . . . . 13
⊢ {1, 2}
∈ V |
32 | 30, 31 | pm3.2i 471 |
. . . . . . . . . . . 12
⊢ (ℙ
∈ V ∧ {1, 2} ∈ V) |
33 | | elmapg 8611 |
. . . . . . . . . . . 12
⊢ ((ℙ
∈ V ∧ {1, 2} ∈ V) → ({〈1, 𝑝〉, 〈2, 𝑞〉} ∈ (ℙ ↑m
{1, 2}) ↔ {〈1, 𝑝〉, 〈2, 𝑞〉}:{1,
2}⟶ℙ)) |
34 | 32, 33 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
({〈1, 𝑝〉,
〈2, 𝑞〉} ∈
(ℙ ↑m {1, 2}) ↔ {〈1, 𝑝〉, 〈2, 𝑞〉}:{1,
2}⟶ℙ)) |
35 | 29, 34 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉} ∈ (ℙ
↑m {1, 2})) |
36 | | fveq1 6770 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉} → (𝑓‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘)) |
37 | 36 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉} ∧ 𝑘 ∈ {1, 2}) → (𝑓‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘)) |
38 | 37 | sumeq2dv 15413 |
. . . . . . . . . . . . 13
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉} → Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = Σ𝑘 ∈ {1, 2} ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘)) |
39 | 38 | eqeq1d 2742 |
. . . . . . . . . . . 12
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉} → (Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞) ↔ Σ𝑘 ∈ {1, 2} ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = (𝑝 + 𝑞))) |
40 | 39 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉} → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = (𝑝 + 𝑞)))) |
41 | 40 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉}) → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = (𝑝 + 𝑞)))) |
42 | | prmz 16378 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
43 | | prmz 16378 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
44 | | fveq2 6771 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉}‘1)) |
45 | 22, 24 | fvpr1 7062 |
. . . . . . . . . . . . . . 15
⊢ (1 ≠ 2
→ ({〈1, 𝑝〉,
〈2, 𝑞〉}‘1)
= 𝑝) |
46 | 21, 45 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉}‘1)
= 𝑝 |
47 | 44, 46 | eqtrdi 2796 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = 𝑝) |
48 | | fveq2 6771 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 2 → ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉}‘2)) |
49 | 23, 25 | fvpr2 7064 |
. . . . . . . . . . . . . . 15
⊢ (1 ≠ 2
→ ({〈1, 𝑝〉,
〈2, 𝑞〉}‘2)
= 𝑞) |
50 | 21, 49 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉}‘2)
= 𝑞 |
51 | 48, 50 | eqtrdi 2796 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 2 → ({〈1, 𝑝〉, 〈2, 𝑞〉}‘𝑘) = 𝑞) |
52 | | zcn 12324 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℤ → 𝑝 ∈
ℂ) |
53 | | zcn 12324 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ℤ → 𝑞 ∈
ℂ) |
54 | 52, 53 | anim12i 613 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈
ℂ)) |
55 | 7, 2 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℤ ∧ 2 ∈ ℕ) |
56 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (1
∈ ℤ ∧ 2 ∈ ℕ)) |
57 | 21 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → 1 ≠
2) |
58 | 47, 51, 54, 56, 57 | sumpr 15458 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) →
Σ𝑘 ∈ {1, 2}
({〈1, 𝑝〉,
〈2, 𝑞〉}‘𝑘) = (𝑝 + 𝑞)) |
59 | 42, 43, 58 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
Σ𝑘 ∈ {1, 2}
({〈1, 𝑝〉,
〈2, 𝑞〉}‘𝑘) = (𝑝 + 𝑞)) |
60 | | 2re 12047 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
61 | | 3re 12053 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℝ |
62 | | 2lt3 12145 |
. . . . . . . . . . . 12
⊢ 2 <
3 |
63 | 60, 61, 62 | ltleii 11098 |
. . . . . . . . . . 11
⊢ 2 ≤
3 |
64 | 59, 63 | jctil 520 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (2 ≤
3 ∧ Σ𝑘 ∈ {1,
2} ({〈1, 𝑝〉,
〈2, 𝑞〉}‘𝑘) = (𝑝 + 𝑞))) |
65 | 35, 41, 64 | rspcedvd 3564 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
∃𝑓 ∈ (ℙ
↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞))) |
66 | 65 | adantr 481 |
. . . . . . . 8
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ Σ𝑘
∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞))) |
67 | | eqeq1 2744 |
. . . . . . . . . . . . 13
⊢ (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) ↔ (𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘))) |
68 | | eqcom 2747 |
. . . . . . . . . . . . 13
⊢ ((𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)) |
69 | 67, 68 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞))) |
70 | 69 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑁 = (𝑝 + 𝑞) → ((2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)))) |
71 | 70 | rexbidv 3228 |
. . . . . . . . . 10
⊢ (𝑁 = (𝑝 + 𝑞) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 𝑁 =
Σ𝑘 ∈ {1, 2}
(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ Σ𝑘
∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)))) |
72 | 71 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 𝑁 =
Σ𝑘 ∈ {1, 2}
(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ Σ𝑘
∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)))) |
73 | 72 | adantl 482 |
. . . . . . . 8
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 𝑁 =
Σ𝑘 ∈ {1, 2}
(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ Σ𝑘
∈ {1, 2} (𝑓‘𝑘) = (𝑝 + 𝑞)))) |
74 | 66, 73 | mpbird 256 |
. . . . . . 7
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 𝑁 =
Σ𝑘 ∈ {1, 2}
(𝑓‘𝑘))) |
75 | 3, 20, 74 | rspcedvd 3564 |
. . . . . 6
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
76 | 75 | a1d 25 |
. . . . 5
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
77 | 76 | ex 413 |
. . . 4
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))))) |
78 | 77 | rexlimivv 3223 |
. . 3
⊢
(∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ (𝑝 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
79 | 78 | impcom 408 |
. 2
⊢ ((𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
80 | 1, 79 | sylbi 216 |
1
⊢ (𝑁 ∈ GoldbachEven →
∃𝑑 ∈ ℕ
∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |