Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesgbe Structured version   Visualization version   GIF version

Theorem nnsum3primesgbe 43439
Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesgbe (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesgbe
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 43398 . 2 (𝑁 ∈ GoldbachEven ↔ (𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))))
2 2nn 11558 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → 2 ∈ ℕ)
4 oveq2 7024 . . . . . . . . . . 11 (𝑑 = 2 → (1...𝑑) = (1...2))
5 df-2 11548 . . . . . . . . . . . . 13 2 = (1 + 1)
65oveq2i 7027 . . . . . . . . . . . 12 (1...2) = (1...(1 + 1))
7 1z 11861 . . . . . . . . . . . . 13 1 ∈ ℤ
8 fzpr 12812 . . . . . . . . . . . . 13 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
97, 8ax-mp 5 . . . . . . . . . . . 12 (1...(1 + 1)) = {1, (1 + 1)}
10 1p1e2 11610 . . . . . . . . . . . . 13 (1 + 1) = 2
1110preq2i 4580 . . . . . . . . . . . 12 {1, (1 + 1)} = {1, 2}
126, 9, 113eqtri 2823 . . . . . . . . . . 11 (1...2) = {1, 2}
134, 12syl6eq 2847 . . . . . . . . . 10 (𝑑 = 2 → (1...𝑑) = {1, 2})
1413oveq2d 7032 . . . . . . . . 9 (𝑑 = 2 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 {1, 2}))
15 breq1 4965 . . . . . . . . . 10 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
1613sumeq1d 14891 . . . . . . . . . . 11 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
1716eqeq2d 2805 . . . . . . . . . 10 (𝑑 = 2 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
1815, 17anbi12d 630 . . . . . . . . 9 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
1914, 18rexeqbidv 3362 . . . . . . . 8 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
2019adantl 482 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) ∧ 𝑑 = 2) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
21 1ne2 11693 . . . . . . . . . . . . 13 1 ≠ 2
22 1ex 10483 . . . . . . . . . . . . . 14 1 ∈ V
23 2ex 11562 . . . . . . . . . . . . . 14 2 ∈ V
24 vex 3440 . . . . . . . . . . . . . 14 𝑝 ∈ V
25 vex 3440 . . . . . . . . . . . . . 14 𝑞 ∈ V
2622, 23, 24, 25fpr 6779 . . . . . . . . . . . . 13 (1 ≠ 2 → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
2721, 26mp1i 13 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
28 prssi 4661 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {𝑝, 𝑞} ⊆ ℙ)
2927, 28fssd 6396 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ)
30 prmex 15850 . . . . . . . . . . . . 13 ℙ ∈ V
31 prex 5224 . . . . . . . . . . . . 13 {1, 2} ∈ V
3230, 31pm3.2i 471 . . . . . . . . . . . 12 (ℙ ∈ V ∧ {1, 2} ∈ V)
33 elmapg 8269 . . . . . . . . . . . 12 ((ℙ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑𝑚 {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3432, 33mp1i 13 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑𝑚 {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3529, 34mpbird 258 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑𝑚 {1, 2}))
36 fveq1 6537 . . . . . . . . . . . . . . 15 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3736adantr 481 . . . . . . . . . . . . . 14 ((𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∧ 𝑘 ∈ {1, 2}) → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3837sumeq2dv 14893 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3938eqeq1d 2797 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞) ↔ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
4039anbi2d 628 . . . . . . . . . . 11 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
4140adantl 482 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}) → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
42 prmz 15848 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 15848 . . . . . . . . . . . 12 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 fveq2 6538 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1))
4522, 24fvpr1 6819 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝)
4621, 45ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝
4744, 46syl6eq 2847 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑝)
48 fveq2 6538 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2))
4923, 25fvpr2 6820 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞)
5021, 49ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞
5148, 50syl6eq 2847 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑞)
52 zcn 11834 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℂ)
53 zcn 11834 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℂ)
5452, 53anim12i 612 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ))
557, 2pm3.2i 471 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℕ)
5655a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (1 ∈ ℤ ∧ 2 ∈ ℕ))
5721a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → 1 ≠ 2)
5847, 51, 54, 56, 57sumpr 14936 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
5942, 43, 58syl2an 595 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
60 2re 11559 . . . . . . . . . . . 12 2 ∈ ℝ
61 3re 11565 . . . . . . . . . . . 12 3 ∈ ℝ
62 2lt3 11657 . . . . . . . . . . . 12 2 < 3
6360, 61, 62ltleii 10610 . . . . . . . . . . 11 2 ≤ 3
6459, 63jctil 520 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
6535, 41, 64rspcedvd 3566 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
6665adantr 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
67 eqeq1 2799 . . . . . . . . . . . . 13 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ (𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
68 eqcom 2802 . . . . . . . . . . . . 13 ((𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))
6967, 68syl6bb 288 . . . . . . . . . . . 12 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
7069anbi2d 628 . . . . . . . . . . 11 (𝑁 = (𝑝 + 𝑞) → ((2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7170rexbidv 3260 . . . . . . . . . 10 (𝑁 = (𝑝 + 𝑞) → (∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
72713ad2ant3 1128 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7372adantl 482 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7466, 73mpbird 258 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
753, 20, 74rspcedvd 3566 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7675a1d 25 . . . . 5 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7776ex 413 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))))
7877rexlimivv 3255 . . 3 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7978impcom 408 . 2 ((𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
801, 79sylbi 218 1 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wrex 3106  Vcvv 3437  {cpr 4474  cop 4478   class class class wbr 4962  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  cc 10381  1c1 10384   + caddc 10386  cle 10522  cn 11486  2c2 11540  3c3 11541  cz 11829  ...cfz 12742  Σcsu 14876  cprime 15844   Even ceven 43271   Odd codd 43272   GoldbachEven cgbe 43392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-prm 15845  df-gbe 43395
This theorem is referenced by:  nnsum4primesgbe  43440  nnsum3primesle9  43441  bgoldbnnsum3prm  43451
  Copyright terms: Public domain W3C validator