Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesgbe Structured version   Visualization version   GIF version

Theorem nnsum3primesgbe 47132
Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesgbe (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesgbe
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 47091 . 2 (𝑁 ∈ GoldbachEven ↔ (𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))))
2 2nn 12316 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → 2 ∈ ℕ)
4 oveq2 7428 . . . . . . . . . . 11 (𝑑 = 2 → (1...𝑑) = (1...2))
5 df-2 12306 . . . . . . . . . . . . 13 2 = (1 + 1)
65oveq2i 7431 . . . . . . . . . . . 12 (1...2) = (1...(1 + 1))
7 1z 12623 . . . . . . . . . . . . 13 1 ∈ ℤ
8 fzpr 13589 . . . . . . . . . . . . 13 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
97, 8ax-mp 5 . . . . . . . . . . . 12 (1...(1 + 1)) = {1, (1 + 1)}
10 1p1e2 12368 . . . . . . . . . . . . 13 (1 + 1) = 2
1110preq2i 4742 . . . . . . . . . . . 12 {1, (1 + 1)} = {1, 2}
126, 9, 113eqtri 2760 . . . . . . . . . . 11 (1...2) = {1, 2}
134, 12eqtrdi 2784 . . . . . . . . . 10 (𝑑 = 2 → (1...𝑑) = {1, 2})
1413oveq2d 7436 . . . . . . . . 9 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
15 breq1 5151 . . . . . . . . . 10 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
1613sumeq1d 15680 . . . . . . . . . . 11 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
1716eqeq2d 2739 . . . . . . . . . 10 (𝑑 = 2 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
1815, 17anbi12d 631 . . . . . . . . 9 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
1914, 18rexeqbidv 3340 . . . . . . . 8 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
2019adantl 481 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) ∧ 𝑑 = 2) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
21 1ne2 12451 . . . . . . . . . . . . 13 1 ≠ 2
22 1ex 11241 . . . . . . . . . . . . . 14 1 ∈ V
23 2ex 12320 . . . . . . . . . . . . . 14 2 ∈ V
24 vex 3475 . . . . . . . . . . . . . 14 𝑝 ∈ V
25 vex 3475 . . . . . . . . . . . . . 14 𝑞 ∈ V
2622, 23, 24, 25fpr 7163 . . . . . . . . . . . . 13 (1 ≠ 2 → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
2721, 26mp1i 13 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
28 prssi 4825 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {𝑝, 𝑞} ⊆ ℙ)
2927, 28fssd 6740 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ)
30 prmex 16648 . . . . . . . . . . . . 13 ℙ ∈ V
31 prex 5434 . . . . . . . . . . . . 13 {1, 2} ∈ V
3230, 31pm3.2i 470 . . . . . . . . . . . 12 (ℙ ∈ V ∧ {1, 2} ∈ V)
33 elmapg 8858 . . . . . . . . . . . 12 ((ℙ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3432, 33mp1i 13 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3529, 34mpbird 257 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}))
36 fveq1 6896 . . . . . . . . . . . . . . 15 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∧ 𝑘 ∈ {1, 2}) → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3837sumeq2dv 15682 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3938eqeq1d 2730 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞) ↔ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
4039anbi2d 629 . . . . . . . . . . 11 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
4140adantl 481 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}) → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
42 prmz 16646 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 16646 . . . . . . . . . . . 12 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 fveq2 6897 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1))
4522, 24fvpr1 7202 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝)
4621, 45ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝
4744, 46eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑝)
48 fveq2 6897 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2))
4923, 25fvpr2 7204 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞)
5021, 49ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞
5148, 50eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑞)
52 zcn 12594 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℂ)
53 zcn 12594 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℂ)
5452, 53anim12i 612 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ))
557, 2pm3.2i 470 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℕ)
5655a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (1 ∈ ℤ ∧ 2 ∈ ℕ))
5721a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → 1 ≠ 2)
5847, 51, 54, 56, 57sumpr 15727 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
5942, 43, 58syl2an 595 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
60 2re 12317 . . . . . . . . . . . 12 2 ∈ ℝ
61 3re 12323 . . . . . . . . . . . 12 3 ∈ ℝ
62 2lt3 12415 . . . . . . . . . . . 12 2 < 3
6360, 61, 62ltleii 11368 . . . . . . . . . . 11 2 ≤ 3
6459, 63jctil 519 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
6535, 41, 64rspcedvd 3611 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
6665adantr 480 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
67 eqeq1 2732 . . . . . . . . . . . . 13 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ (𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
68 eqcom 2735 . . . . . . . . . . . . 13 ((𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))
6967, 68bitrdi 287 . . . . . . . . . . . 12 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
7069anbi2d 629 . . . . . . . . . . 11 (𝑁 = (𝑝 + 𝑞) → ((2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7170rexbidv 3175 . . . . . . . . . 10 (𝑁 = (𝑝 + 𝑞) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
72713ad2ant3 1133 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7372adantl 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7466, 73mpbird 257 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
753, 20, 74rspcedvd 3611 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7675a1d 25 . . . . 5 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7776ex 412 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))))
7877rexlimivv 3196 . . 3 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7978impcom 407 . 2 ((𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
801, 79sylbi 216 1 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wrex 3067  Vcvv 3471  {cpr 4631  cop 4635   class class class wbr 5148  wf 6544  cfv 6548  (class class class)co 7420  m cmap 8845  cc 11137  1c1 11140   + caddc 11142  cle 11280  cn 12243  2c2 12298  3c3 12299  cz 12589  ...cfz 13517  Σcsu 15665  cprime 16642   Even ceven 46964   Odd codd 46965   GoldbachEven cgbe 47085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666  df-prm 16643  df-gbe 47088
This theorem is referenced by:  nnsum4primesgbe  47133  nnsum3primesle9  47134  bgoldbnnsum3prm  47144
  Copyright terms: Public domain W3C validator