Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesgbe Structured version   Visualization version   GIF version

Theorem nnsum3primesgbe 47797
Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primesgbe (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑁,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesgbe
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 47756 . 2 (𝑁 ∈ GoldbachEven ↔ (𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))))
2 2nn 12266 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → 2 ∈ ℕ)
4 oveq2 7398 . . . . . . . . . . 11 (𝑑 = 2 → (1...𝑑) = (1...2))
5 df-2 12256 . . . . . . . . . . . . 13 2 = (1 + 1)
65oveq2i 7401 . . . . . . . . . . . 12 (1...2) = (1...(1 + 1))
7 1z 12570 . . . . . . . . . . . . 13 1 ∈ ℤ
8 fzpr 13547 . . . . . . . . . . . . 13 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
97, 8ax-mp 5 . . . . . . . . . . . 12 (1...(1 + 1)) = {1, (1 + 1)}
10 1p1e2 12313 . . . . . . . . . . . . 13 (1 + 1) = 2
1110preq2i 4704 . . . . . . . . . . . 12 {1, (1 + 1)} = {1, 2}
126, 9, 113eqtri 2757 . . . . . . . . . . 11 (1...2) = {1, 2}
134, 12eqtrdi 2781 . . . . . . . . . 10 (𝑑 = 2 → (1...𝑑) = {1, 2})
1413oveq2d 7406 . . . . . . . . 9 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
15 breq1 5113 . . . . . . . . . 10 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
1613sumeq1d 15673 . . . . . . . . . . 11 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
1716eqeq2d 2741 . . . . . . . . . 10 (𝑑 = 2 → (𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
1815, 17anbi12d 632 . . . . . . . . 9 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
1914, 18rexeqbidv 3322 . . . . . . . 8 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
2019adantl 481 . . . . . . 7 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) ∧ 𝑑 = 2) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
21 1ne2 12396 . . . . . . . . . . . . 13 1 ≠ 2
22 1ex 11177 . . . . . . . . . . . . . 14 1 ∈ V
23 2ex 12270 . . . . . . . . . . . . . 14 2 ∈ V
24 vex 3454 . . . . . . . . . . . . . 14 𝑝 ∈ V
25 vex 3454 . . . . . . . . . . . . . 14 𝑞 ∈ V
2622, 23, 24, 25fpr 7129 . . . . . . . . . . . . 13 (1 ≠ 2 → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
2721, 26mp1i 13 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶{𝑝, 𝑞})
28 prssi 4788 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {𝑝, 𝑞} ⊆ ℙ)
2927, 28fssd 6708 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ)
30 prmex 16654 . . . . . . . . . . . . 13 ℙ ∈ V
31 prex 5395 . . . . . . . . . . . . 13 {1, 2} ∈ V
3230, 31pm3.2i 470 . . . . . . . . . . . 12 (ℙ ∈ V ∧ {1, 2} ∈ V)
33 elmapg 8815 . . . . . . . . . . . 12 ((ℙ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3432, 33mp1i 13 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}:{1, 2}⟶ℙ))
3529, 34mpbird 257 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∈ (ℙ ↑m {1, 2}))
36 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} ∧ 𝑘 ∈ {1, 2}) → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3837sumeq2dv 15675 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘))
3938eqeq1d 2732 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → (Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞) ↔ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
4039anbi2d 630 . . . . . . . . . . 11 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩} → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
4140adantl 481 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩}) → ((2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))))
42 prmz 16652 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 16652 . . . . . . . . . . . 12 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 fveq2 6861 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1))
4522, 24fvpr1 7169 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝)
4621, 45ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘1) = 𝑝
4744, 46eqtrdi 2781 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑝)
48 fveq2 6861 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2))
4923, 25fvpr2 7170 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞)
5021, 49ax-mp 5 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘2) = 𝑞
5148, 50eqtrdi 2781 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = 𝑞)
52 zcn 12541 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℂ)
53 zcn 12541 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℂ)
5452, 53anim12i 613 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ))
557, 2pm3.2i 470 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℕ)
5655a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (1 ∈ ℤ ∧ 2 ∈ ℕ))
5721a1i 11 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → 1 ≠ 2)
5847, 51, 54, 56, 57sumpr 15721 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
5942, 43, 58syl2an 596 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞))
60 2re 12267 . . . . . . . . . . . 12 2 ∈ ℝ
61 3re 12273 . . . . . . . . . . . 12 3 ∈ ℝ
62 2lt3 12360 . . . . . . . . . . . 12 2 < 3
6360, 61, 62ltleii 11304 . . . . . . . . . . 11 2 ≤ 3
6459, 63jctil 519 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩}‘𝑘) = (𝑝 + 𝑞)))
6535, 41, 64rspcedvd 3593 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
6665adantr 480 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
67 eqeq1 2734 . . . . . . . . . . . . 13 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ (𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
68 eqcom 2737 . . . . . . . . . . . . 13 ((𝑝 + 𝑞) = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))
6967, 68bitrdi 287 . . . . . . . . . . . 12 (𝑁 = (𝑝 + 𝑞) → (𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞)))
7069anbi2d 630 . . . . . . . . . . 11 (𝑁 = (𝑝 + 𝑞) → ((2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7170rexbidv 3158 . . . . . . . . . 10 (𝑁 = (𝑝 + 𝑞) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
72713ad2ant3 1135 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7372adantl 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ Σ𝑘 ∈ {1, 2} (𝑓𝑘) = (𝑝 + 𝑞))))
7466, 73mpbird 257 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
753, 20, 74rspcedvd 3593 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7675a1d 25 . . . . 5 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7776ex 412 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))))
7877rexlimivv 3180 . . 3 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞)) → (𝑁 ∈ Even → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
7978impcom 407 . 2 ((𝑁 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑁 = (𝑝 + 𝑞))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
801, 79sylbi 217 1 (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  {cpr 4594  cop 4598   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  1c1 11076   + caddc 11078  cle 11216  cn 12193  2c2 12248  3c3 12249  cz 12536  ...cfz 13475  Σcsu 15659  cprime 16648   Even ceven 47629   Odd codd 47630   GoldbachEven cgbe 47750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-prm 16649  df-gbe 47753
This theorem is referenced by:  nnsum4primesgbe  47798  nnsum3primesle9  47799  bgoldbnnsum3prm  47809
  Copyright terms: Public domain W3C validator