MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpggrp Structured version   Visualization version   GIF version

Theorem simpggrp 20065
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
simpggrp (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp)

Proof of Theorem simpggrp
StepHypRef Expression
1 issimpg 20063 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
21simplbi 496 1 (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5152  cfv 6553  2oc2o 8489  cen 8969  Grpcgrp 18904  NrmSGrpcnsg 19090  SimpGrpcsimpg 20061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-simpg 20062
This theorem is referenced by:  simpggrpd  20066  prmsimpcyc  32964
  Copyright terms: Public domain W3C validator