MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpggrp Structured version   Visualization version   GIF version

Theorem simpggrp 19963
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
simpggrp (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp)

Proof of Theorem simpggrp
StepHypRef Expression
1 issimpg 19961 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
21simplbi 498 1 (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  cfv 6543  2oc2o 8459  cen 8935  Grpcgrp 18818  NrmSGrpcnsg 19000  SimpGrpcsimpg 19959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-simpg 19960
This theorem is referenced by:  simpggrpd  19964  prmsimpcyc  32368
  Copyright terms: Public domain W3C validator