Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpggrp | Structured version Visualization version GIF version |
Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpggrp | ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpg 19610 | . 2 ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 2oc2o 8261 ≈ cen 8688 Grpcgrp 18492 NrmSGrpcnsg 18665 SimpGrpcsimpg 19608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-simpg 19609 |
This theorem is referenced by: simpggrpd 19613 prmsimpcyc 31383 |
Copyright terms: Public domain | W3C validator |