MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpg2nsg Structured version   Visualization version   GIF version

Theorem simpg2nsg 20140
Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
simpg2nsg (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)

Proof of Theorem simpg2nsg
StepHypRef Expression
1 issimpg 20136 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
21simprbi 496 1 (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  cfv 6573  2oc2o 8516  cen 9000  Grpcgrp 18973  NrmSGrpcnsg 19161  SimpGrpcsimpg 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-simpg 20135
This theorem is referenced by:  trivnsimpgd  20141  simpgnsgd  20144
  Copyright terms: Public domain W3C validator