MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpg2nsg Structured version   Visualization version   GIF version

Theorem simpg2nsg 19680
Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
simpg2nsg (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)

Proof of Theorem simpg2nsg
StepHypRef Expression
1 issimpg 19676 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
21simprbi 496 1 (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5078  cfv 6430  2oc2o 8275  cen 8704  Grpcgrp 18558  NrmSGrpcnsg 18731  SimpGrpcsimpg 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-simpg 19675
This theorem is referenced by:  trivnsimpgd  19681  simpgnsgd  19684
  Copyright terms: Public domain W3C validator