MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpg2nsg Structured version   Visualization version   GIF version

Theorem simpg2nsg 20131
Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
simpg2nsg (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)

Proof of Theorem simpg2nsg
StepHypRef Expression
1 issimpg 20127 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
21simprbi 496 1 (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  cfv 6563  2oc2o 8499  cen 8981  Grpcgrp 18964  NrmSGrpcnsg 19152  SimpGrpcsimpg 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-simpg 20126
This theorem is referenced by:  trivnsimpgd  20132  simpgnsgd  20135
  Copyright terms: Public domain W3C validator