![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpg2nsg | Structured version Visualization version GIF version |
Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpg2nsg | ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpg 20085 | . 2 ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) | |
2 | 1 | simprbi 495 | 1 ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5143 ‘cfv 6543 2oc2o 8479 ≈ cen 8960 Grpcgrp 18920 NrmSGrpcnsg 19108 SimpGrpcsimpg 20083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-iota 6495 df-fv 6551 df-simpg 20084 |
This theorem is referenced by: trivnsimpgd 20090 simpgnsgd 20093 |
Copyright terms: Public domain | W3C validator |