Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpg2nsg | Structured version Visualization version GIF version |
Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpg2nsg | ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpg 19676 | . 2 ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 2oc2o 8275 ≈ cen 8704 Grpcgrp 18558 NrmSGrpcnsg 18731 SimpGrpcsimpg 19674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-simpg 19675 |
This theorem is referenced by: trivnsimpgd 19681 simpgnsgd 19684 |
Copyright terms: Public domain | W3C validator |