MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpg2nsg Structured version   Visualization version   GIF version

Theorem simpg2nsg 20089
Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Assertion
Ref Expression
simpg2nsg (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)

Proof of Theorem simpg2nsg
StepHypRef Expression
1 issimpg 20085 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
21simprbi 495 1 (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099   class class class wbr 5143  cfv 6543  2oc2o 8479  cen 8960  Grpcgrp 18920  NrmSGrpcnsg 19108  SimpGrpcsimpg 20083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-iota 6495  df-fv 6551  df-simpg 20084
This theorem is referenced by:  trivnsimpgd  20090  simpgnsgd  20093
  Copyright terms: Public domain W3C validator