MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issimpgd Structured version   Visualization version   GIF version

Theorem issimpgd 20114
Description: Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
issimpgd.1 (𝜑𝐺 ∈ Grp)
issimpgd.2 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
Assertion
Ref Expression
issimpgd (𝜑𝐺 ∈ SimpGrp)

Proof of Theorem issimpgd
StepHypRef Expression
1 issimpgd.1 . 2 (𝜑𝐺 ∈ Grp)
2 issimpgd.2 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
3 issimpg 20113 . 2 (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o))
41, 2, 3sylanbrc 583 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5142  cfv 6560  2oc2o 8501  cen 8983  Grpcgrp 18952  NrmSGrpcnsg 19140  SimpGrpcsimpg 20111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-simpg 20112
This theorem is referenced by:  2nsgsimpgd  20123
  Copyright terms: Public domain W3C validator