MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nsgsimpgd Structured version   Visualization version   GIF version

Theorem 2nsgsimpgd 20136
Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
2nsgsimpgd.1 𝐵 = (Base‘𝐺)
2nsgsimpgd.2 0 = (0g𝐺)
2nsgsimpgd.3 (𝜑𝐺 ∈ Grp)
2nsgsimpgd.4 (𝜑 → ¬ { 0 } = 𝐵)
2nsgsimpgd.5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
Assertion
Ref Expression
2nsgsimpgd (𝜑𝐺 ∈ SimpGrp)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵   𝑥,𝐺

Proof of Theorem 2nsgsimpgd
StepHypRef Expression
1 2nsgsimpgd.3 . 2 (𝜑𝐺 ∈ Grp)
2 2nsgsimpgd.5 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
3 elprg 4652 . . . . . . 7 (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
52, 4mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵})
6 simpr 484 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → 𝑥 = { 0 })
7 2nsgsimpgd.2 . . . . . . . . . . 11 0 = (0g𝐺)
870nsg 19199 . . . . . . . . . 10 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
91, 8syl 17 . . . . . . . . 9 (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺))
109adantr 480 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺))
116, 10eqeltrd 2838 . . . . . . 7 ((𝜑𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
1211adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
13 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
14 2nsgsimpgd.1 . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1514nsgid 19200 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
161, 15syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (NrmSGrp‘𝐺))
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺))
1813, 17eqeltrd 2838 . . . . . . 7 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
1918adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
20 elpri 4653 . . . . . . 7 (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2120adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2212, 19, 21mpjaodan 960 . . . . 5 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺))
235, 22impbida 801 . . . 4 (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵}))
2423eqrdv 2732 . . 3 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
25 snex 5441 . . . . 5 { 0 } ∈ V
2625a1i 11 . . . 4 (𝜑 → { 0 } ∈ V)
2714fvexi 6920 . . . . 5 𝐵 ∈ V
2827a1i 11 . . . 4 (𝜑𝐵 ∈ V)
29 2nsgsimpgd.4 . . . 4 (𝜑 → ¬ { 0 } = 𝐵)
3026, 28, 29enpr2d 9087 . . 3 (𝜑 → {{ 0 }, 𝐵} ≈ 2o)
3124, 30eqbrtrd 5169 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
321, 31issimpgd 20127 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  Vcvv 3477  {csn 4630  {cpr 4632  cfv 6562  2oc2o 8498  cen 8980  Basecbs 17244  0gc0g 17485  Grpcgrp 18963  NrmSGrpcnsg 19151  SimpGrpcsimpg 20124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-nsg 19154  df-simpg 20125
This theorem is referenced by:  simpgnsgbid  20137  prmgrpsimpgd  20148
  Copyright terms: Public domain W3C validator