MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nsgsimpgd Structured version   Visualization version   GIF version

Theorem 2nsgsimpgd 20059
Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
2nsgsimpgd.1 𝐵 = (Base‘𝐺)
2nsgsimpgd.2 0 = (0g𝐺)
2nsgsimpgd.3 (𝜑𝐺 ∈ Grp)
2nsgsimpgd.4 (𝜑 → ¬ { 0 } = 𝐵)
2nsgsimpgd.5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
Assertion
Ref Expression
2nsgsimpgd (𝜑𝐺 ∈ SimpGrp)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵   𝑥,𝐺

Proof of Theorem 2nsgsimpgd
StepHypRef Expression
1 2nsgsimpgd.3 . 2 (𝜑𝐺 ∈ Grp)
2 2nsgsimpgd.5 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
3 elprg 4650 . . . . . . 7 (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
52, 4mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵})
6 simpr 484 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → 𝑥 = { 0 })
7 2nsgsimpgd.2 . . . . . . . . . . 11 0 = (0g𝐺)
870nsg 19124 . . . . . . . . . 10 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
91, 8syl 17 . . . . . . . . 9 (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺))
109adantr 480 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺))
116, 10eqeltrd 2829 . . . . . . 7 ((𝜑𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
1211adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
13 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
14 2nsgsimpgd.1 . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1514nsgid 19125 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
161, 15syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (NrmSGrp‘𝐺))
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺))
1813, 17eqeltrd 2829 . . . . . . 7 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
1918adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
20 elpri 4651 . . . . . . 7 (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2120adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2212, 19, 21mpjaodan 957 . . . . 5 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺))
235, 22impbida 800 . . . 4 (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵}))
2423eqrdv 2726 . . 3 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
25 snex 5433 . . . . 5 { 0 } ∈ V
2625a1i 11 . . . 4 (𝜑 → { 0 } ∈ V)
2714fvexi 6911 . . . . 5 𝐵 ∈ V
2827a1i 11 . . . 4 (𝜑𝐵 ∈ V)
29 2nsgsimpgd.4 . . . 4 (𝜑 → ¬ { 0 } = 𝐵)
3026, 28, 29enpr2d 9074 . . 3 (𝜑 → {{ 0 }, 𝐵} ≈ 2o)
3124, 30eqbrtrd 5170 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
321, 31issimpgd 20050 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  {cpr 4631  cfv 6548  2oc2o 8481  cen 8961  Basecbs 17180  0gc0g 17421  Grpcgrp 18890  NrmSGrpcnsg 19076  SimpGrpcsimpg 20047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-subg 19078  df-nsg 19079  df-simpg 20048
This theorem is referenced by:  simpgnsgbid  20060  prmgrpsimpgd  20071
  Copyright terms: Public domain W3C validator