MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nsgsimpgd Structured version   Visualization version   GIF version

Theorem 2nsgsimpgd 20002
Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
2nsgsimpgd.1 𝐵 = (Base‘𝐺)
2nsgsimpgd.2 0 = (0g𝐺)
2nsgsimpgd.3 (𝜑𝐺 ∈ Grp)
2nsgsimpgd.4 (𝜑 → ¬ { 0 } = 𝐵)
2nsgsimpgd.5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
Assertion
Ref Expression
2nsgsimpgd (𝜑𝐺 ∈ SimpGrp)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵   𝑥,𝐺

Proof of Theorem 2nsgsimpgd
StepHypRef Expression
1 2nsgsimpgd.3 . 2 (𝜑𝐺 ∈ Grp)
2 2nsgsimpgd.5 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
3 elprg 4602 . . . . . . 7 (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
52, 4mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵})
6 simpr 484 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → 𝑥 = { 0 })
7 2nsgsimpgd.2 . . . . . . . . . . 11 0 = (0g𝐺)
870nsg 19067 . . . . . . . . . 10 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
91, 8syl 17 . . . . . . . . 9 (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺))
109adantr 480 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺))
116, 10eqeltrd 2828 . . . . . . 7 ((𝜑𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
1211adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
13 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
14 2nsgsimpgd.1 . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1514nsgid 19068 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
161, 15syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (NrmSGrp‘𝐺))
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺))
1813, 17eqeltrd 2828 . . . . . . 7 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
1918adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
20 elpri 4603 . . . . . . 7 (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2120adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2212, 19, 21mpjaodan 960 . . . . 5 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺))
235, 22impbida 800 . . . 4 (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵}))
2423eqrdv 2727 . . 3 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
25 snex 5378 . . . . 5 { 0 } ∈ V
2625a1i 11 . . . 4 (𝜑 → { 0 } ∈ V)
2714fvexi 6840 . . . . 5 𝐵 ∈ V
2827a1i 11 . . . 4 (𝜑𝐵 ∈ V)
29 2nsgsimpgd.4 . . . 4 (𝜑 → ¬ { 0 } = 𝐵)
3026, 28, 29enpr2d 8981 . . 3 (𝜑 → {{ 0 }, 𝐵} ≈ 2o)
3124, 30eqbrtrd 5117 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
321, 31issimpgd 19993 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  {cpr 4581  cfv 6486  2oc2o 8389  cen 8876  Basecbs 17139  0gc0g 17362  Grpcgrp 18831  NrmSGrpcnsg 19019  SimpGrpcsimpg 19990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-nsg 19022  df-simpg 19991
This theorem is referenced by:  simpgnsgbid  20003  prmgrpsimpgd  20014
  Copyright terms: Public domain W3C validator