MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nsgsimpgd Structured version   Visualization version   GIF version

Theorem 2nsgsimpgd 20011
Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
2nsgsimpgd.1 𝐵 = (Base‘𝐺)
2nsgsimpgd.2 0 = (0g𝐺)
2nsgsimpgd.3 (𝜑𝐺 ∈ Grp)
2nsgsimpgd.4 (𝜑 → ¬ { 0 } = 𝐵)
2nsgsimpgd.5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
Assertion
Ref Expression
2nsgsimpgd (𝜑𝐺 ∈ SimpGrp)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵   𝑥,𝐺

Proof of Theorem 2nsgsimpgd
StepHypRef Expression
1 2nsgsimpgd.3 . 2 (𝜑𝐺 ∈ Grp)
2 2nsgsimpgd.5 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
3 elprg 4594 . . . . . . 7 (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵)))
52, 4mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵})
6 simpr 484 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → 𝑥 = { 0 })
7 2nsgsimpgd.2 . . . . . . . . . . 11 0 = (0g𝐺)
870nsg 19076 . . . . . . . . . 10 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
91, 8syl 17 . . . . . . . . 9 (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺))
109adantr 480 . . . . . . . 8 ((𝜑𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺))
116, 10eqeltrd 2831 . . . . . . 7 ((𝜑𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
1211adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺))
13 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
14 2nsgsimpgd.1 . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
1514nsgid 19077 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
161, 15syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (NrmSGrp‘𝐺))
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺))
1813, 17eqeltrd 2831 . . . . . . 7 ((𝜑𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
1918adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺))
20 elpri 4595 . . . . . . 7 (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2120adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵))
2212, 19, 21mpjaodan 960 . . . . 5 ((𝜑𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺))
235, 22impbida 800 . . . 4 (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵}))
2423eqrdv 2729 . . 3 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
25 snex 5369 . . . . 5 { 0 } ∈ V
2625a1i 11 . . . 4 (𝜑 → { 0 } ∈ V)
2714fvexi 6831 . . . . 5 𝐵 ∈ V
2827a1i 11 . . . 4 (𝜑𝐵 ∈ V)
29 2nsgsimpgd.4 . . . 4 (𝜑 → ¬ { 0 } = 𝐵)
3026, 28, 29enpr2d 8965 . . 3 (𝜑 → {{ 0 }, 𝐵} ≈ 2o)
3124, 30eqbrtrd 5108 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
321, 31issimpgd 20002 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  {cpr 4573  cfv 6476  2oc2o 8374  cen 8861  Basecbs 17115  0gc0g 17338  Grpcgrp 18841  NrmSGrpcnsg 19029  SimpGrpcsimpg 19999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-nsg 19032  df-simpg 20000
This theorem is referenced by:  simpgnsgbid  20012  prmgrpsimpgd  20023
  Copyright terms: Public domain W3C validator