![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2nsgsimpgd | Structured version Visualization version GIF version |
Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
2nsgsimpgd.1 | ⊢ 𝐵 = (Base‘𝐺) |
2nsgsimpgd.2 | ⊢ 0 = (0g‘𝐺) |
2nsgsimpgd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
2nsgsimpgd.4 | ⊢ (𝜑 → ¬ { 0 } = 𝐵) |
2nsgsimpgd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
Ref | Expression |
---|---|
2nsgsimpgd | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nsgsimpgd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | 2nsgsimpgd.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
3 | elprg 4670 | . . . . . . 7 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵))) | |
4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵))) |
5 | 2, 4 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵}) |
6 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → 𝑥 = { 0 }) | |
7 | 2nsgsimpgd.2 | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝐺) | |
8 | 7 | 0nsg 19209 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
9 | 1, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺)) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺)) |
11 | 6, 10 | eqeltrd 2844 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
12 | 11 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
13 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
14 | 2nsgsimpgd.1 | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝐺) | |
15 | 14 | nsgid 19210 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
16 | 1, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (NrmSGrp‘𝐺)) |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺)) |
18 | 13, 17 | eqeltrd 2844 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
19 | 18 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
20 | elpri 4671 | . . . . . . 7 ⊢ (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
22 | 12, 19, 21 | mpjaodan 959 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
23 | 5, 22 | impbida 800 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵})) |
24 | 23 | eqrdv 2738 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
25 | snex 5451 | . . . . 5 ⊢ { 0 } ∈ V | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → { 0 } ∈ V) |
27 | 14 | fvexi 6934 | . . . . 5 ⊢ 𝐵 ∈ V |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
29 | 2nsgsimpgd.4 | . . . 4 ⊢ (𝜑 → ¬ { 0 } = 𝐵) | |
30 | 26, 28, 29 | enpr2d 9115 | . . 3 ⊢ (𝜑 → {{ 0 }, 𝐵} ≈ 2o) |
31 | 24, 30 | eqbrtrd 5188 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) |
32 | 1, 31 | issimpgd 20137 | 1 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 {cpr 4650 ‘cfv 6573 2oc2o 8516 ≈ cen 9000 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 NrmSGrpcnsg 19161 SimpGrpcsimpg 20134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-nsg 19164 df-simpg 20135 |
This theorem is referenced by: simpgnsgbid 20147 prmgrpsimpgd 20158 |
Copyright terms: Public domain | W3C validator |