| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2nsgsimpgd | Structured version Visualization version GIF version | ||
| Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| 2nsgsimpgd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| 2nsgsimpgd.2 | ⊢ 0 = (0g‘𝐺) |
| 2nsgsimpgd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 2nsgsimpgd.4 | ⊢ (𝜑 → ¬ { 0 } = 𝐵) |
| 2nsgsimpgd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
| Ref | Expression |
|---|---|
| 2nsgsimpgd | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nsgsimpgd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | 2nsgsimpgd.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
| 3 | elprg 4594 | . . . . . . 7 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵))) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵))) |
| 5 | 2, 4 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵}) |
| 6 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → 𝑥 = { 0 }) | |
| 7 | 2nsgsimpgd.2 | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝐺) | |
| 8 | 7 | 0nsg 19076 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
| 9 | 1, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺)) |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺)) |
| 11 | 6, 10 | eqeltrd 2831 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
| 12 | 11 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
| 13 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 14 | 2nsgsimpgd.1 | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝐺) | |
| 15 | 14 | nsgid 19077 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| 16 | 1, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| 18 | 13, 17 | eqeltrd 2831 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
| 19 | 18 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
| 20 | elpri 4595 | . . . . . . 7 ⊢ (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
| 22 | 12, 19, 21 | mpjaodan 960 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
| 23 | 5, 22 | impbida 800 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵})) |
| 24 | 23 | eqrdv 2729 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
| 25 | snex 5369 | . . . . 5 ⊢ { 0 } ∈ V | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → { 0 } ∈ V) |
| 27 | 14 | fvexi 6831 | . . . . 5 ⊢ 𝐵 ∈ V |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 29 | 2nsgsimpgd.4 | . . . 4 ⊢ (𝜑 → ¬ { 0 } = 𝐵) | |
| 30 | 26, 28, 29 | enpr2d 8965 | . . 3 ⊢ (𝜑 → {{ 0 }, 𝐵} ≈ 2o) |
| 31 | 24, 30 | eqbrtrd 5108 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) |
| 32 | 1, 31 | issimpgd 20002 | 1 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 {cpr 4573 ‘cfv 6476 2oc2o 8374 ≈ cen 8861 Basecbs 17115 0gc0g 17338 Grpcgrp 18841 NrmSGrpcnsg 19029 SimpGrpcsimpg 19999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-nsg 19032 df-simpg 20000 |
| This theorem is referenced by: simpgnsgbid 20012 prmgrpsimpgd 20023 |
| Copyright terms: Public domain | W3C validator |