Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2nsgsimpgd | Structured version Visualization version GIF version |
Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
2nsgsimpgd.1 | ⊢ 𝐵 = (Base‘𝐺) |
2nsgsimpgd.2 | ⊢ 0 = (0g‘𝐺) |
2nsgsimpgd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
2nsgsimpgd.4 | ⊢ (𝜑 → ¬ { 0 } = 𝐵) |
2nsgsimpgd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
Ref | Expression |
---|---|
2nsgsimpgd | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nsgsimpgd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | 2nsgsimpgd.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
3 | elprg 4588 | . . . . . . 7 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵))) | |
4 | 3 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 ∈ {{ 0 }, 𝐵} ↔ (𝑥 = { 0 } ∨ 𝑥 = 𝐵))) |
5 | 2, 4 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (NrmSGrp‘𝐺)) → 𝑥 ∈ {{ 0 }, 𝐵}) |
6 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → 𝑥 = { 0 }) | |
7 | 2nsgsimpgd.2 | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝐺) | |
8 | 7 | 0nsg 18787 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
9 | 1, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺)) |
10 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → { 0 } ∈ (NrmSGrp‘𝐺)) |
11 | 6, 10 | eqeltrd 2841 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
12 | 11 | adantlr 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = { 0 }) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
13 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
14 | 2nsgsimpgd.1 | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝐺) | |
15 | 14 | nsgid 18788 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
16 | 1, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ (NrmSGrp‘𝐺)) |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐵 ∈ (NrmSGrp‘𝐺)) |
18 | 13, 17 | eqeltrd 2841 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
19 | 18 | adantlr 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
20 | elpri 4589 | . . . . . . 7 ⊢ (𝑥 ∈ {{ 0 }, 𝐵} → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) | |
21 | 20 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) → (𝑥 = { 0 } ∨ 𝑥 = 𝐵)) |
22 | 12, 19, 21 | mpjaodan 956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {{ 0 }, 𝐵}) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
23 | 5, 22 | impbida 798 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ {{ 0 }, 𝐵})) |
24 | 23 | eqrdv 2738 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
25 | snex 5358 | . . . . 5 ⊢ { 0 } ∈ V | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → { 0 } ∈ V) |
27 | 14 | fvexi 6783 | . . . . 5 ⊢ 𝐵 ∈ V |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
29 | 2nsgsimpgd.4 | . . . 4 ⊢ (𝜑 → ¬ { 0 } = 𝐵) | |
30 | 26, 28, 29 | enpr2d 8813 | . . 3 ⊢ (𝜑 → {{ 0 }, 𝐵} ≈ 2o) |
31 | 24, 30 | eqbrtrd 5101 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) |
32 | 1, 31 | issimpgd 19686 | 1 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 Vcvv 3431 {csn 4567 {cpr 4569 ‘cfv 6431 2oc2o 8276 ≈ cen 8705 Basecbs 16902 0gc0g 17140 Grpcgrp 18567 NrmSGrpcnsg 18740 SimpGrpcsimpg 19683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-2o 8283 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-0g 17142 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-grp 18570 df-minusg 18571 df-sbg 18572 df-subg 18742 df-nsg 18743 df-simpg 19684 |
This theorem is referenced by: simpgnsgbid 19696 prmgrpsimpgd 19707 |
Copyright terms: Public domain | W3C validator |