| Metamath
Proof Explorer Theorem List (p. 200 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dprdval0prc 19901 | The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
| ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) | ||
| Theorem | dprdval 19902* | The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) | ||
| Theorem | eldprd 19903* | A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) | ||
| Theorem | dprdgrp 19904 | Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | ||
| Theorem | dprdf 19905 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | ||
| Theorem | dprdf2 19906 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | ||
| Theorem | dprdcntz 19907 | The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) | ||
| Theorem | dprddisj 19908 | The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
| Theorem | dprdw 19909* | The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) | ||
| Theorem | dprdwd 19910* | A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) | ||
| Theorem | dprdff 19911* | A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | ||
| Theorem | dprdfcl 19912* | A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝐹‘𝑋) ∈ (𝑆‘𝑋)) | ||
| Theorem | dprdffsupp 19913* | A finitely supported function in 𝑆 is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
| Theorem | dprdfcntz 19914* | A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | ||
| Theorem | dprdssv 19915 | The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 | ||
| Theorem | dprdfid 19916* | A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) | ||
| Theorem | eldprdi 19917* | The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) | ||
| Theorem | dprdfinv 19918* | Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) | ||
| Theorem | dprdfadd 19919* | Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) | ||
| Theorem | dprdfsub 19920* | Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘f − 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)))) | ||
| Theorem | dprdfeq0 19921* | The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 ↔ 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) | ||
| Theorem | dprdf11 19922* | Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) | ||
| Theorem | dprdsubg 19923 | The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | ||
| Theorem | dprdub 19924 | Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) | ||
| Theorem | dprdlub 19925* | The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) | ||
| Theorem | dprdspan 19926 | The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) | ||
| Theorem | dprdres 19927 | Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ (𝐺 DProd (𝑆 ↾ 𝐴)) ⊆ (𝐺 DProd 𝑆))) | ||
| Theorem | dprdss 19928* | Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑇) & ⊢ (𝜑 → dom 𝑇 = 𝐼) & ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))) | ||
| Theorem | dprdz 19929* | A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) = { 0 })) | ||
| Theorem | dprd0 19930 | The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) | ||
| Theorem | dprdf1o 19931 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆))) | ||
| Theorem | dprdf1 19932 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) | ||
| Theorem | subgdmdprd 19933 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) | ||
| Theorem | subgdprd 19934 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴) ⇒ ⊢ (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆)) | ||
| Theorem | dprdsn 19935 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈𝐴, 𝑆〉} ∧ (𝐺 DProd {〈𝐴, 𝑆〉}) = 𝑆)) | ||
| Theorem | dmdprdsplitlem 19936* | Lemma for dmdprdsplit 19946. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) | ||
| Theorem | dprdcntz2 19937 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
| Theorem | dprddisj2 19938 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | ||
| Theorem | dprd2dlem2 19939* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) | ||
| Theorem | dprd2dlem1 19940* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐶))) = (𝐺 DProd (𝑖 ∈ 𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
| Theorem | dprd2da 19941* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dprd2db 19942* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
| Theorem | dprd2d2 19943* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ 𝑆)) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) ∧ (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))))) | ||
| Theorem | dmdprdsplit2lem 19944 | Lemma for dmdprdsplit 19946. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) ∧ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })) | ||
| Theorem | dmdprdsplit2 19945 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dmdprdsplit 19946 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) | ||
| Theorem | dprdsplit 19947 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
| Theorem | dmdprdpr 19948 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺dom DProd {〈∅, 𝑆〉, 〈1o, 𝑇〉} ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ (𝑆 ∩ 𝑇) = { 0 }))) | ||
| Theorem | dprdpr 19949 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝐺 DProd {〈∅, 𝑆〉, 〈1o, 𝑇〉}) = (𝑆 ⊕ 𝑇)) | ||
| Theorem | dpjlem 19950 | Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) | ||
| Theorem | dpjcntz 19951 | The two subgroups that appear in dpjval 19955 commute. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjdisj 19952 | The two subgroups that appear in dpjval 19955 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
| Theorem | dpjlsm 19953 | The two subgroups that appear in dpjval 19955 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjfval 19954* | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ 𝐼 ↦ ((𝑆‘𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))) | ||
| Theorem | dpjval 19955 | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjf 19956 | The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋):(𝐺 DProd 𝑆)⟶(𝑆‘𝑋)) | ||
| Theorem | dpjidcl 19957* | The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) | ||
| Theorem | dpjeq 19958* | Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) | ||
| Theorem | dpjid 19959* | The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) | ||
| Theorem | dpjlid 19960 | The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) ⇒ ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) | ||
| Theorem | dpjrid 19961 | The 𝑌-th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ≠ 𝑋) ⇒ ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) | ||
| Theorem | dpjghm 19962 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) | ||
| Theorem | dpjghm2 19963 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋)))) | ||
| Theorem | ablfacrplem 19964* | Lemma for ablfacrp2 19966. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} & ⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) ⇒ ⊢ (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1) | ||
| Theorem | ablfacrp 19965* | A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups 𝐾, 𝐿 that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} & ⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝜑 → ((𝐾 ∩ 𝐿) = { 0 } ∧ (𝐾 ⊕ 𝐿) = 𝐵)) | ||
| Theorem | ablfacrp2 19966* | The factors 𝐾, 𝐿 of ablfacrp 19965 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} & ⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) ⇒ ⊢ (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁)) | ||
| Theorem | ablfac1lem 19967* | Lemma for ablfac1b 19969. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) & ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) | ||
| Theorem | ablfac1a 19968* | The factors of ablfac1b 19969 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | ||
| Theorem | ablfac1b 19969* | Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | ablfac1c 19970* | The factors of ablfac1b 19969 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝐵) | ||
| Theorem | ablfac1eulem 19971* | Lemma for ablfac1eu 19972. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵)) & ⊢ (𝜑 → dom 𝑇 = 𝐴) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝐶 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑇‘𝑞)) = (𝑞↑𝐶)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))) | ||
| Theorem | ablfac1eu 19972* | The factorization of ablfac1b 19969 is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to 𝑆. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℙ) & ⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵)) & ⊢ (𝜑 → dom 𝑇 = 𝐴) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝐶 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑇‘𝑞)) = (𝑞↑𝐶)) ⇒ ⊢ (𝜑 → 𝑇 = 𝑆) | ||
| Theorem | pgpfac1lem1 19973* | Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) → ((𝑆 ⊕ 𝑊) ⊕ (𝐾‘{𝐶})) = 𝑈) | ||
| Theorem | pgpfac1lem2 19974* | Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 ⊕ 𝑊)) | ||
| Theorem | pgpfac1lem3a 19975* | Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀)) | ||
| Theorem | pgpfac1lem3 19976* | Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) & ⊢ 𝐷 = (𝐶(+g‘𝐺)((𝑀 / 𝑃) · 𝐴)) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) | ||
| Theorem | pgpfac1lem4 19977* | Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) & ⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) & ⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) | ||
| Theorem | pgpfac1lem5 19978* | Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑠))) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) | ||
| Theorem | pgpfac1 19979* | Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ 𝑆 = (𝐾‘{𝐴}) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝐵)) | ||
| Theorem | pgpfaclem1 19980* | Lemma for pgpfac 19983. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) & ⊢ 𝐻 = (𝐺 ↾s 𝑈) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐻)) & ⊢ 𝑂 = (od‘𝐻) & ⊢ 𝐸 = (gEx‘𝐻) & ⊢ 0 = (0g‘𝐻) & ⊢ ⊕ = (LSSum‘𝐻) & ⊢ (𝜑 → 𝐸 ≠ 1) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐶) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝑊) & ⊢ 𝑇 = (𝑆 ++ 〈“(𝐾‘{𝑋})”〉) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) | ||
| Theorem | pgpfaclem2 19981* | Lemma for pgpfac 19983. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) & ⊢ 𝐻 = (𝐺 ↾s 𝑈) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐻)) & ⊢ 𝑂 = (od‘𝐻) & ⊢ 𝐸 = (gEx‘𝐻) & ⊢ 0 = (0g‘𝐻) & ⊢ ⊕ = (LSSum‘𝐻) & ⊢ (𝜑 → 𝐸 ≠ 1) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → (𝑂‘𝑋) = 𝐸) & ⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐻)) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ∩ 𝑊) = { 0 }) & ⊢ (𝜑 → ((𝐾‘{𝑋}) ⊕ 𝑊) = 𝑈) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) | ||
| Theorem | pgpfaclem3 19982* | Lemma for pgpfac 19983. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑈 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)) | ||
| Theorem | pgpfac 19983* | Full factorization of a finite abelian p-group, by iterating pgpfac1 19979. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑃 pGrp 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) | ||
| Theorem | ablfaclem1 19984* | Lemma for ablfac 19987. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) ⇒ ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) | ||
| Theorem | ablfaclem2 19985* | Lemma for ablfac 19987. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) & ⊢ (𝜑 → 𝐹:𝐴⟶Word 𝐶) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ (𝑊‘(𝑆‘𝑦))) & ⊢ 𝐿 = ∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝐹‘𝑦)) & ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐿))–1-1-onto→𝐿) ⇒ ⊢ (𝜑 → (𝑊‘𝐵) ≠ ∅) | ||
| Theorem | ablfaclem3 19986* | Lemma for ablfac 19987. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} & ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) & ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) ⇒ ⊢ (𝜑 → (𝑊‘𝐵) ≠ ∅) | ||
| Theorem | ablfac 19987* | The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) | ||
| Theorem | ablfac2 19988* | Choose generators for each cyclic group in ablfac 19987. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) | ||
| Syntax | csimpg 19989 | Extend class notation with the class of simple groups. |
| class SimpGrp | ||
| Definition | df-simpg 19990 | Define class of all simple groups. A simple group is a group (df-grp 18833) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity (simpgnsgbid 20002). (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o} | ||
| Theorem | issimpg 19991 | The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp ↔ (𝐺 ∈ Grp ∧ (NrmSGrp‘𝐺) ≈ 2o)) | ||
| Theorem | issimpgd 19992 | Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) ⇒ ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | ||
| Theorem | simpggrp 19993 | A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp → 𝐺 ∈ Grp) | ||
| Theorem | simpggrpd 19994 | A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
| Theorem | simpg2nsg 19995 | A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) | ||
| Theorem | trivnsimpgd 19996 | Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → ¬ 𝐺 ∈ SimpGrp) | ||
| Theorem | simpgntrivd 19997 | Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → ¬ 𝐵 = { 0 }) | ||
| Theorem | simpgnideld 19998* | A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ¬ 𝑥 = 0 ) | ||
| Theorem | simpgnsgd 19999 | The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) | ||
| Theorem | simpgnsgeqd 20000 | A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) & ⊢ (𝜑 → 𝐴 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐴 = { 0 } ∨ 𝐴 = 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |