Home | Metamath
Proof Explorer Theorem List (p. 200 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvdsrcl2 19901 | Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌) → 𝑌 ∈ 𝐵) | ||
Theorem | dvdsrid 19902 | An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) | ||
Theorem | dvdsrtr 19903 | Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) | ||
Theorem | dvdsrmul1 19904 | The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) | ||
Theorem | dvdsrneg 19905 | An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ (𝑁‘𝑋)) | ||
Theorem | dvdsr01 19906 | In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 20563.) (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) | ||
Theorem | dvdsr02 19907 | Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) | ||
Theorem | isunit 19908 | Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) | ||
Theorem | 1unit 19909 | The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) | ||
Theorem | unitcl 19910 | A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) | ||
Theorem | unitss 19911 | The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
Theorem | opprunit 19912 | Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) ⇒ ⊢ 𝑈 = (Unit‘𝑆) | ||
Theorem | crngunit 19913 | Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) | ||
Theorem | dvdsunit 19914 | A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) | ||
Theorem | unitmulcl 19915 | The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) | ||
Theorem | unitmulclb 19916 | Reversal of unitmulcl 19915 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) | ||
Theorem | unitgrpbas 19917 | The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ 𝑈 = (Base‘𝐺) | ||
Theorem | unitgrp 19918 | The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) | ||
Theorem | unitabl 19919 | The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) | ||
Theorem | unitgrpid 19920 | The identity of the multiplicative group is 1r. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) | ||
Theorem | unitsubm 19921 | The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) | ||
Syntax | cinvr 19922 | Extend class notation with multiplicative inverse. |
class invr | ||
Definition | df-invr 19923 | Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.) |
⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | ||
Theorem | invrfval 19924 | Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ 𝐼 = (invg‘𝐺) | ||
Theorem | unitinvcl 19925 | The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) | ||
Theorem | unitinvinv 19926 | The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) | ||
Theorem | ringinvcl 19927 | The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) | ||
Theorem | unitlinv 19928 | A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
Theorem | unitrinv 19929 | A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
Theorem | 1rinv 19930 | The inverse of the identity is the identity. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝐼 = (invr‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) | ||
Theorem | 0unit 19931 | The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) | ||
Theorem | unitnegcl 19932 | The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) | ||
Syntax | cdvr 19933 | Extend class notation with ring division. |
class /r | ||
Definition | df-dvr 19934* | Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | ||
Theorem | dvrfval 19935* | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) | ||
Theorem | dvrval 19936 | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | ||
Theorem | dvrcl 19937 | Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝐵) | ||
Theorem | unitdvcl 19938 | The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) | ||
Theorem | dvrid 19939 | A cancellation law for division. (divid 11671 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 / 𝑋) = 1 ) | ||
Theorem | dvr1 19940 | A cancellation law for division. (div1 11673 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) | ||
Theorem | dvrass 19941 | An associative law for division. (divass 11660 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) | ||
Theorem | dvrcan1 19942 | A cancellation law for division. (divcan1 11651 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) | ||
Theorem | dvrcan3 19943 | A cancellation law for division. (divcan3 11668 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) | ||
Theorem | dvreq1 19944 | A cancellation law for division. (diveq1 11675 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) | ||
Theorem | ringinvdv 19945 | Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = ( 1 / 𝑋)) | ||
Theorem | rngidpropd 19946* | The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | ||
Theorem | dvdsrpropd 19947* | The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) | ||
Theorem | unitpropd 19948* | The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) | ||
Theorem | invrpropd 19949* | The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) | ||
Theorem | isirred 19950* | An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) | ||
Theorem | isnirred 19951* | The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) | ||
Theorem | isirred2 19952* | Expand out the class difference from isirred 19950. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
Theorem | opprirred 19953 | Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) ⇒ ⊢ 𝐼 = (Irred‘𝑆) | ||
Theorem | irredn0 19954 | The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) | ||
Theorem | irredcl 19955 | An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) | ||
Theorem | irrednu 19956 | An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) | ||
Theorem | irredn1 19957 | The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 1 ) | ||
Theorem | irredrmul 19958 | The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝐼) | ||
Theorem | irredlmul 19959 | The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑋 · 𝑌) ∈ 𝐼) | ||
Theorem | irredmul 19960 | If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
Theorem | irredneg 19961 | The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | ||
Theorem | irrednegb 19962 | An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐼 ↔ (𝑁‘𝑋) ∈ 𝐼)) | ||
Syntax | crpm 19963 | Syntax for the ring primes function. |
class RPrime | ||
Definition | df-rprm 19964* | Define the function associating with a ring its set of prime elements. A prime element is a nonzero non-unit that satisfies an equivalent of Euclid's lemma euclemma 16427. Prime elements are closely related to irreducible elements (see df-irred 19894). (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ RPrime = (𝑤 ∈ V ↦ ⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) | ||
Syntax | crh 19965 | Extend class notation with the ring homomorphisms. |
class RingHom | ||
Syntax | crs 19966 | Extend class notation with the ring isomorphisms. |
class RingIso | ||
Syntax | cric 19967 | Extend class notation with the ring isomorphism relation. |
class ≃𝑟 | ||
Definition | df-rnghom 19968* | Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) | ||
Definition | df-rngiso 19969* | Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | ||
Theorem | dfrhm2 19970* | The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | ||
Definition | df-ric 19971 | Define the ring isomorphism relation, analogous to df-gic 18885: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.) |
⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | ||
Theorem | rhmrcl1 19972 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | ||
Theorem | rhmrcl2 19973 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | ||
Theorem | isrhm 19974 | A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | ||
Theorem | rhmmhm 19975 | A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
Theorem | isrim0 19976 | An isomorphism of rings is a homomorphism whose converse is also a homomorphism . (Contributed by AV, 22-Oct-2019.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) | ||
Theorem | rimrcl 19977 | Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | rhmghm 19978 | A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
Theorem | rhmf 19979 | A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) | ||
Theorem | rhmmul 19980 | A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
Theorem | isrhm2d 19981* | Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
Theorem | isrhmd 19982* | Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
Theorem | rhm1 19983 | Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) | ||
Theorem | idrhm 19984 | The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( I ↾ 𝐵) ∈ (𝑅 RingHom 𝑅)) | ||
Theorem | rhmf1o 19985 | A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
Theorem | isrim 19986 | An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) | ||
Theorem | rimf1o 19987 | An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | rimrhm 19988 | An isomorphism of rings is a homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
Theorem | rimgim 19989 | An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) | ||
Theorem | rhmco 19990 | The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) | ||
Theorem | pwsco1rhm 19991* | Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑅 ↑s 𝐵) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌)) | ||
Theorem | pwsco2rhm 19992* | Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑆 ↑s 𝐴) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 RingHom 𝑍)) | ||
Theorem | f1ghm0to0 19993 | If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | f1rhm0to0ALT 19994 | Alternate proof for f1ghm0to0 19993. Using ghmf1 18872 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | gim0to0 19995 | A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | kerf1ghm 19996 | A group homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) | ||
Theorem | brric 19997 | The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | ||
Theorem | brric2 19998* | The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc 36150 of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) | ||
Theorem | ricgic 19999 | If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆) | ||
Syntax | cdr 20000 | Extend class notation with class of all division rings. |
class DivRing |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |