| Metamath
Proof Explorer Theorem List (p. 200 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | gsummpt1n0 19901* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19902. (Contributed by AV, 11-Oct-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) & ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) | ||
| Theorem | gsummptif1n0 19902* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019.) (Proof shortened by AV, 11-Oct-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) & ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = 𝐴) | ||
| Theorem | gsummptcl 19903* | Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝑁 ↦ 𝑋)) ∈ 𝐵) | ||
| Theorem | gsummptfif1o 19904* | Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑖 ∈ 𝑁 ↦ 𝑋) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝑁) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsummptfzcl 19905* | Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) | ||
| Theorem | gsum2dlem1 19906* | Lemma 1 for gsum2d 19908. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) | ||
| Theorem | gsum2dlem2 19907* | Lemma for gsum2d 19908. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | ||
| Theorem | gsum2d 19908* | Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | ||
| Theorem | gsum2d2lem 19909* | Lemma for gsum2d2 19910: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) finSupp 0 ) | ||
| Theorem | gsum2d2 19910* | Write a group sum over a two-dimensional region as a double sum. Note that 𝐶(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))))) | ||
| Theorem | gsumcom2 19911* | Two-dimensional commutation of a group sum. Note that while 𝐴 and 𝐷 are constants w.r.t. 𝑗, 𝑘, 𝐶(𝑗) and 𝐸(𝑘) are not. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ↔ (𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸))) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐷, 𝑗 ∈ 𝐸 ↦ 𝑋))) | ||
| Theorem | gsumxp 19912* | Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) | ||
| Theorem | gsumcom 19913* | Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋))) | ||
| Theorem | gsumcom3 19914* | A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) | ||
| Theorem | gsumcom3fi 19915* | A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) | ||
| Theorem | gsumxp2 19916* | Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) | ||
| Theorem | prdsgsum 19917* | Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CMnd) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
| Theorem | pwsgsum 19918* | Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CMnd) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
| Theorem | fsfnn0gsumfsffz 19919* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) | ||
| Theorem | nn0gsumfz 19920* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐵 ↑m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹‘𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) | ||
| Theorem | nn0gsumfz0 19921* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐵 ↑m (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) | ||
| Theorem | gsummptnn0fz 19922* | A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) | ||
| Theorem | gsummptnn0fzfv 19923* | A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹‘𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹‘𝑘)))) | ||
| Theorem | telgsumfzslem 19924* | Lemma for telgsumfzs 19925 (induction step). (Contributed by AV, 23-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑦 ∈ (ℤ≥‘𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶 ∈ 𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋𝑀 / 𝑘⦌𝐶 − ⦋(𝑦 + 1) / 𝑘⦌𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋𝑀 / 𝑘⦌𝐶 − ⦋((𝑦 + 1) + 1) / 𝑘⦌𝐶))) | ||
| Theorem | telgsumfzs 19925* | Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋𝑀 / 𝑘⦌𝐶 − ⦋(𝑁 + 1) / 𝑘⦌𝐶)) | ||
| Theorem | telgsumfz 19926* | Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15776. (Contributed by AV, 23-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) & ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) & ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) | ||
| Theorem | telgsumfz0s 19927* | Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 − ⦋(𝑆 + 1) / 𝑘⦌𝐶)) | ||
| Theorem | telgsumfz0 19928* | Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15776. (Contributed by AV, 23-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) & ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 0 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) | ||
| Theorem | telgsums 19929* | Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = ⦋0 / 𝑘⦌𝐶) | ||
| Theorem | telgsum 19930* | Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) & ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) & ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) & ⊢ (𝑘 = 0 → 𝐴 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) | ||
| Syntax | cdprd 19931 | Internal direct product of a family of subgroups. |
| class DProd | ||
| Syntax | cdpj 19932 | Projection operator for a direct product. |
| class dProj | ||
| Definition | df-dprd 19933* | Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | ||
| Definition | df-dpj 19934* | Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠‘𝑖)(proj1‘𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))) | ||
| Theorem | reldmdprd 19935 | The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
| ⊢ Rel dom DProd | ||
| Theorem | dmdprd 19936* | The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) | ||
| Theorem | dmdprdd 19937* | Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dprddomprc 19938 | A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
| ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | ||
| Theorem | dprddomcld 19939 | If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → 𝐼 ∈ V) | ||
| Theorem | dprdval0prc 19940 | The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
| ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) | ||
| Theorem | dprdval 19941* | The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) | ||
| Theorem | eldprd 19942* | A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) | ||
| Theorem | dprdgrp 19943 | Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | ||
| Theorem | dprdf 19944 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | ||
| Theorem | dprdf2 19945 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | ||
| Theorem | dprdcntz 19946 | The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) | ||
| Theorem | dprddisj 19947 | The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
| Theorem | dprdw 19948* | The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) | ||
| Theorem | dprdwd 19949* | A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) | ||
| Theorem | dprdff 19950* | A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | ||
| Theorem | dprdfcl 19951* | A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝐹‘𝑋) ∈ (𝑆‘𝑋)) | ||
| Theorem | dprdffsupp 19952* | A finitely supported function in 𝑆 is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
| Theorem | dprdfcntz 19953* | A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
| ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | ||
| Theorem | dprdssv 19954 | The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 | ||
| Theorem | dprdfid 19955* | A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) | ||
| Theorem | eldprdi 19956* | The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) | ||
| Theorem | dprdfinv 19957* | Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) | ||
| Theorem | dprdfadd 19958* | Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) | ||
| Theorem | dprdfsub 19959* | Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘f − 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)))) | ||
| Theorem | dprdfeq0 19960* | The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 ↔ 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) | ||
| Theorem | dprdf11 19961* | Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) | ||
| Theorem | dprdsubg 19962 | The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | ||
| Theorem | dprdub 19963 | Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) | ||
| Theorem | dprdlub 19964* | The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) | ||
| Theorem | dprdspan 19965 | The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) | ||
| Theorem | dprdres 19966 | Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ (𝐺 DProd (𝑆 ↾ 𝐴)) ⊆ (𝐺 DProd 𝑆))) | ||
| Theorem | dprdss 19967* | Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑇) & ⊢ (𝜑 → dom 𝑇 = 𝐼) & ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))) | ||
| Theorem | dprdz 19968* | A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) = { 0 })) | ||
| Theorem | dprd0 19969 | The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) | ||
| Theorem | dprdf1o 19970 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆))) | ||
| Theorem | dprdf1 19971 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) | ||
| Theorem | subgdmdprd 19972 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) | ||
| Theorem | subgdprd 19973 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴) ⇒ ⊢ (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆)) | ||
| Theorem | dprdsn 19974 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈𝐴, 𝑆〉} ∧ (𝐺 DProd {〈𝐴, 𝑆〉}) = 𝑆)) | ||
| Theorem | dmdprdsplitlem 19975* | Lemma for dmdprdsplit 19985. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) | ||
| Theorem | dprdcntz2 19976 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
| Theorem | dprddisj2 19977 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | ||
| Theorem | dprd2dlem2 19978* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) | ||
| Theorem | dprd2dlem1 19979* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐶))) = (𝐺 DProd (𝑖 ∈ 𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
| Theorem | dprd2da 19980* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dprd2db 19981* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
| Theorem | dprd2d2 19982* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ 𝑆)) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) ∧ (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))))) | ||
| Theorem | dmdprdsplit2lem 19983 | Lemma for dmdprdsplit 19985. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) ∧ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })) | ||
| Theorem | dmdprdsplit2 19984 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
| Theorem | dmdprdsplit 19985 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) | ||
| Theorem | dprdsplit 19986 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
| Theorem | dmdprdpr 19987 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺dom DProd {〈∅, 𝑆〉, 〈1o, 𝑇〉} ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ (𝑆 ∩ 𝑇) = { 0 }))) | ||
| Theorem | dprdpr 19988 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝐺 DProd {〈∅, 𝑆〉, 〈1o, 𝑇〉}) = (𝑆 ⊕ 𝑇)) | ||
| Theorem | dpjlem 19989 | Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) | ||
| Theorem | dpjcntz 19990 | The two subgroups that appear in dpjval 19994 commute. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjdisj 19991 | The two subgroups that appear in dpjval 19994 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
| Theorem | dpjlsm 19992 | The two subgroups that appear in dpjval 19994 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjfval 19993* | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ 𝐼 ↦ ((𝑆‘𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))) | ||
| Theorem | dpjval 19994 | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
| Theorem | dpjf 19995 | The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑃‘𝑋):(𝐺 DProd 𝑆)⟶(𝑆‘𝑋)) | ||
| Theorem | dpjidcl 19996* | The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) | ||
| Theorem | dpjeq 19997* | Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) | ||
| Theorem | dpjid 19998* | The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) | ||
| Theorem | dpjlid 19999 | The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) ⇒ ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) | ||
| Theorem | dpjrid 20000 | The 𝑌-th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ≠ 𝑋) ⇒ ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |