![]() |
Metamath
Proof Explorer Theorem List (p. 200 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gsummulg 19901* | Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β CMnd) & β’ (π β π β β0) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsummulgz 19902* | Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β Abel) & β’ (π β π β β€) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsumzoppg 19903 | The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ π = (oppgβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π Ξ£g πΉ) = (πΊ Ξ£g πΉ)) | ||
Theorem | gsumzinv 19904 | Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Grp) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsuminv 19905 | Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 4-May-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsummptfidminv 19906* | Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ πΉ = (π₯ β π΄ β¦ πΆ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsumsub 19907 | The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ β = (-gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π»:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βf β π»)) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»))) | ||
Theorem | gsummptfssub 19908* | The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ β = (-gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ (π β πΉ = (π₯ β π΄ β¦ πΆ)) & β’ (π β π» = (π₯ β π΄ β¦ π·)) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ (πΆ β π·))) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»))) | ||
Theorem | gsummptfidmsub 19909* | The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ β = (-gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ πΉ = (π₯ β π΄ β¦ πΆ) & β’ π» = (π₯ β π΄ β¦ π·) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ (πΆ β π·))) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»))) | ||
Theorem | gsumsnfd 19910* | Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π β π) & β’ (π β πΆ β π΅) & β’ ((π β§ π = π) β π΄ = πΆ) & β’ β²ππ & β’ β²ππΆ β β’ (π β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumsnd 19911* | Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π β π) & β’ (π β πΆ β π΅) & β’ ((π β§ π = π) β π΄ = πΆ) β β’ (π β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumsnf 19912* | Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
β’ β²ππΆ & β’ π΅ = (BaseβπΊ) & β’ (π = π β π΄ = πΆ) β β’ ((πΊ β Mnd β§ π β π β§ πΆ β π΅) β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumsn 19913* | Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π = π β π΄ = πΆ) β β’ ((πΊ β Mnd β§ π β π β§ πΆ β π΅) β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumpr 19914* | Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π = π β π΄ = πΆ) & β’ (π = π β π΄ = π·) β β’ ((πΊ β CMnd β§ (π β π β§ π β π β§ π β π) β§ (πΆ β π΅ β§ π· β π΅)) β (πΊ Ξ£g (π β {π, π} β¦ π΄)) = (πΆ + π·)) | ||
Theorem | gsumzunsnd 19915* | Append an element to a finite group sum, more general version of gsumunsnd 19917. (Contributed by AV, 7-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ πΉ = (π β (π΄ βͺ {π}) β¦ π) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β Fin) & β’ (π β ran πΉ β (πβran πΉ)) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) β β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsnfd 19916* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) & β’ β²ππ β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsnd 19917* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 2-Jan-2019.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsnf 19918* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
β’ β²ππ & β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ (π = π β π = π) β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsn 19919* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ (π = π β π = π) β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumdifsnd 19920* | Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β (π β π΄ β¦ π) finSupp (0gβπΊ)) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ π)) = ((πΊ Ξ£g (π β (π΄ β {π}) β¦ π)) + π)) | ||
Theorem | gsumpt 19921 | Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β π β π΄) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β (πΉ supp 0 ) β {π}) β β’ (π β (πΊ Ξ£g πΉ) = (πΉβπ)) | ||
Theorem | gsummptf1o 19922* | Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
β’ β²π₯π» & β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π₯ = πΈ β πΆ = π») & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ (π β πΉ β π΅) & β’ ((π β§ π₯ β π΄) β πΆ β πΉ) & β’ ((π β§ π¦ β π·) β πΈ β π΄) & β’ ((π β§ π₯ β π΄) β β!π¦ β π· π₯ = πΈ) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ πΆ)) = (πΊ Ξ£g (π¦ β π· β¦ π»))) | ||
Theorem | gsummptun 19923* | Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β π β CMnd) & β’ (π β (π΄ βͺ πΆ) β Fin) & β’ (π β (π΄ β© πΆ) = β ) & β’ ((π β§ π₯ β (π΄ βͺ πΆ)) β π· β π΅) β β’ (π β (π Ξ£g (π₯ β (π΄ βͺ πΆ) β¦ π·)) = ((π Ξ£g (π₯ β π΄ β¦ π·)) + (π Ξ£g (π₯ β πΆ β¦ π·)))) | ||
Theorem | gsummpt1n0 19924* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19925. (Contributed by AV, 11-Oct-2019.) |
β’ 0 = (0gβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β πΌ β π) & β’ (π β π β πΌ) & β’ πΉ = (π β πΌ β¦ if(π = π, π΄, 0 )) & β’ (π β βπ β πΌ π΄ β (BaseβπΊ)) β β’ (π β (πΊ Ξ£g πΉ) = β¦π / πβ¦π΄) | ||
Theorem | gsummptif1n0 19925* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019.) (Proof shortened by AV, 11-Oct-2019.) |
β’ 0 = (0gβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β πΌ β π) & β’ (π β π β πΌ) & β’ πΉ = (π β πΌ β¦ if(π = π, π΄, 0 )) & β’ (π β π΄ β (BaseβπΊ)) β β’ (π β (πΊ Ξ£g πΉ) = π΄) | ||
Theorem | gsummptcl 19926* | Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β Fin) & β’ (π β βπ β π π β π΅) β β’ (π β (πΊ Ξ£g (π β π β¦ π)) β π΅) | ||
Theorem | gsummptfif1o 19927* | Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β Fin) & β’ (π β βπ β π π β π΅) & β’ πΉ = (π β π β¦ π) & β’ (π β π»:πΆβ1-1-ontoβπ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (πΉ β π»))) | ||
Theorem | gsummptfzcl 19928* | Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π β (β€β₯βπ)) & β’ (π β πΌ = (π...π)) & β’ (π β βπ β πΌ π β π΅) β β’ (π β (πΊ Ξ£g (π β πΌ β¦ π)) β π΅) | ||
Theorem | gsum2dlem1 19929* | Lemma 1 for gsum2d 19931. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β Rel π΄) & β’ (π β π· β π) & β’ (π β dom π΄ β π·) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (π β (π΄ β {π}) β¦ (ππΉπ))) β π΅) | ||
Theorem | gsum2dlem2 19930* | Lemma for gsum2d 19931. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β Rel π΄) & β’ (π β π· β π) & β’ (π β dom π΄ β π·) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βΎ (π΄ βΎ dom (πΉ supp 0 )))) = (πΊ Ξ£g (π β dom (πΉ supp 0 ) β¦ (πΊ Ξ£g (π β (π΄ β {π}) β¦ (ππΉπ)))))) | ||
Theorem | gsum2d 19931* | Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β Rel π΄) & β’ (π β π· β π) & β’ (π β dom π΄ β π·) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (π β π· β¦ (πΊ Ξ£g (π β (π΄ β {π}) β¦ (ππΉπ)))))) | ||
Theorem | gsum2d2lem 19932* | Lemma for gsum2d2 19933: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (π β π΄, π β πΆ β¦ π) finSupp 0 ) | ||
Theorem | gsum2d2 19933* | Write a group sum over a two-dimensional region as a double sum. Note that πΆ(π) is a function of π. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (πΊ Ξ£g (π β π΄, π β πΆ β¦ π)) = (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ π))))) | ||
Theorem | gsumcom2 19934* | Two-dimensional commutation of a group sum. Note that while π΄ and π· are constants w.r.t. π, π, πΆ(π) and πΈ(π) are not. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) & β’ (π β π· β π) & β’ (π β ((π β π΄ β§ π β πΆ) β (π β π· β§ π β πΈ))) β β’ (π β (πΊ Ξ£g (π β π΄, π β πΆ β¦ π)) = (πΊ Ξ£g (π β π·, π β πΈ β¦ π))) | ||
Theorem | gsumxp 19935* | Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β πΉ:(π΄ Γ πΆ)βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ (ππΉπ)))))) | ||
Theorem | gsumcom 19936* | Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (πΊ Ξ£g (π β π΄, π β πΆ β¦ π)) = (πΊ Ξ£g (π β πΆ, π β π΄ β¦ π))) | ||
Theorem | gsumcom3 19937* | A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ π)))) = (πΊ Ξ£g (π β πΆ β¦ (πΊ Ξ£g (π β π΄ β¦ π))))) | ||
Theorem | gsumcom3fi 19938* | A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ (π β πΆ β Fin) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ π)))) = (πΊ Ξ£g (π β πΆ β¦ (πΊ Ξ£g (π β π΄ β¦ π))))) | ||
Theorem | gsumxp2 19939* | Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β πΉ:(π΄ Γ πΆ)βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (π β πΆ β¦ (πΊ Ξ£g (π β π΄ β¦ (ππΉπ))))) = (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ (ππΉπ)))))) | ||
Theorem | prdsgsum 19940* | Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
β’ π = (πXs(π₯ β πΌ β¦ π )) & β’ π΅ = (Baseβπ ) & β’ 0 = (0gβπ) & β’ (π β πΌ β π) & β’ (π β π½ β π) & β’ (π β π β π) & β’ ((π β§ π₯ β πΌ) β π β CMnd) & β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β π β π΅) & β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp 0 ) β β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) | ||
Theorem | pwsgsum 19941* | Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
β’ π = (π βs πΌ) & β’ π΅ = (Baseβπ ) & β’ 0 = (0gβπ) & β’ (π β πΌ β π) & β’ (π β π½ β π) & β’ (π β π β CMnd) & β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β π β π΅) & β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp 0 ) β β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) | ||
Theorem | fsfnn0gsumfsffz 19942* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β π β β0) & β’ π» = (πΉ βΎ (0...π)) β β’ (π β (βπ₯ β β0 (π < π₯ β (πΉβπ₯) = 0 ) β (πΊ Ξ£g πΉ) = (πΊ Ξ£g π»))) | ||
Theorem | nn0gsumfz 19943* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β πΉ finSupp 0 ) β β’ (π β βπ β β0 βπ β (π΅ βm (0...π ))(π = (πΉ βΎ (0...π )) β§ βπ₯ β β0 (π < π₯ β (πΉβπ₯) = 0 ) β§ (πΊ Ξ£g πΉ) = (πΊ Ξ£g π))) | ||
Theorem | nn0gsumfz0 19944* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β πΉ finSupp 0 ) β β’ (π β βπ β β0 βπ β (π΅ βm (0...π ))(πΊ Ξ£g πΉ) = (πΊ Ξ£g π)) | ||
Theorem | gsummptnn0fz 19945* | A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β βπ β β0 πΆ β π΅) & β’ (π β π β β0) & β’ (π β βπ β β0 (π < π β πΆ = 0 )) β β’ (π β (πΊ Ξ£g (π β β0 β¦ πΆ)) = (πΊ Ξ£g (π β (0...π) β¦ πΆ))) | ||
Theorem | gsummptnn0fzfv 19946* | A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β π β β0) & β’ (π β βπ₯ β β0 (π < π₯ β (πΉβπ₯) = 0 )) β β’ (π β (πΊ Ξ£g (π β β0 β¦ (πΉβπ))) = (πΊ Ξ£g (π β (0...π) β¦ (πΉβπ)))) | ||
Theorem | telgsumfzslem 19947* | Lemma for telgsumfzs 19948 (induction step). (Contributed by AV, 23-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) β β’ ((π¦ β (β€β₯βπ) β§ (π β§ βπ β (π...((π¦ + 1) + 1))πΆ β π΅)) β ((πΊ Ξ£g (π β (π...π¦) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦π / πβ¦πΆ β β¦(π¦ + 1) / πβ¦πΆ) β (πΊ Ξ£g (π β (π...(π¦ + 1)) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦π / πβ¦πΆ β β¦((π¦ + 1) + 1) / πβ¦πΆ))) | ||
Theorem | telgsumfzs 19948* | Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β (β€β₯βπ)) & β’ (π β βπ β (π...(π + 1))πΆ β π΅) β β’ (π β (πΊ Ξ£g (π β (π...π) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ)) | ||
Theorem | telgsumfz 19949* | Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15782. (Contributed by AV, 23-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β (β€β₯βπ)) & β’ (π β βπ β (π...(π + 1))π΄ β π΅) & β’ (π = π β π΄ = πΏ) & β’ (π = (π + 1) β π΄ = πΆ) & β’ (π = π β π΄ = π·) & β’ (π = (π + 1) β π΄ = πΈ) β β’ (π β (πΊ Ξ£g (π β (π...π) β¦ (πΏ β πΆ))) = (π· β πΈ)) | ||
Theorem | telgsumfz0s 19950* | Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β β0) & β’ (π β βπ β (0...(π + 1))πΆ β π΅) β β’ (π β (πΊ Ξ£g (π β (0...π) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦0 / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ)) | ||
Theorem | telgsumfz0 19951* | Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15782. (Contributed by AV, 23-Nov-2019.) |
β’ πΎ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β β0) & β’ (π β βπ β (0...(π + 1))π΄ β πΎ) & β’ (π = π β π΄ = π΅) & β’ (π = (π + 1) β π΄ = πΆ) & β’ (π = 0 β π΄ = π·) & β’ (π = (π + 1) β π΄ = πΈ) β β’ (π β (πΊ Ξ£g (π β (0...π) β¦ (π΅ β πΆ))) = (π· β πΈ)) | ||
Theorem | telgsums 19952* | Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β βπ β β0 πΆ β π΅) & β’ (π β π β β0) & β’ (π β βπ β β0 (π < π β πΆ = 0 )) β β’ (π β (πΊ Ξ£g (π β β0 β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = β¦0 / πβ¦πΆ) | ||
Theorem | telgsum 19953* | Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β βπ β β0 π΄ β π΅) & β’ (π β π β β0) & β’ (π β βπ β β0 (π < π β π΄ = 0 )) & β’ (π = π β π΄ = πΆ) & β’ (π = (π + 1) β π΄ = π·) & β’ (π = 0 β π΄ = πΈ) β β’ (π β (πΊ Ξ£g (π β β0 β¦ (πΆ β π·))) = πΈ) | ||
Syntax | cdprd 19954 | Internal direct product of a family of subgroups. |
class DProd | ||
Syntax | cdpj 19955 | Projection operator for a direct product. |
class dProj | ||
Definition | df-dprd 19956* | Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ DProd = (π β Grp, π β {β β£ (β:dom ββΆ(SubGrpβπ) β§ βπ₯ β dom β(βπ¦ β (dom β β {π₯})(ββπ₯) β ((Cntzβπ)β(ββπ¦)) β§ ((ββπ₯) β© ((mrClsβ(SubGrpβπ))ββͺ (β β (dom β β {π₯})))) = {(0gβπ)}))} β¦ ran (π β {β β Xπ₯ β dom π (π βπ₯) β£ β finSupp (0gβπ)} β¦ (π Ξ£g π))) | ||
Definition | df-dpj 19957* | Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ dProj = (π β Grp, π β (dom DProd β {π}) β¦ (π β dom π β¦ ((π βπ)(proj1βπ)(π DProd (π βΎ (dom π β {π})))))) | ||
Theorem | reldmdprd 19958 | The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
β’ Rel dom DProd | ||
Theorem | dmdprd 19959* | The domain of definition of the internal direct product, which states that π is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
β’ π = (CntzβπΊ) & β’ 0 = (0gβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ ((πΌ β π β§ dom π = πΌ) β (πΊdom DProd π β (πΊ β Grp β§ π:πΌβΆ(SubGrpβπΊ) β§ βπ₯ β πΌ (βπ¦ β (πΌ β {π₯})(πβπ₯) β (πβ(πβπ¦)) β§ ((πβπ₯) β© (πΎββͺ (π β (πΌ β {π₯})))) = { 0 })))) | ||
Theorem | dmdprdd 19960* | Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = (CntzβπΊ) & β’ 0 = (0gβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) & β’ (π β πΊ β Grp) & β’ (π β πΌ β π) & β’ (π β π:πΌβΆ(SubGrpβπΊ)) & β’ ((π β§ (π₯ β πΌ β§ π¦ β πΌ β§ π₯ β π¦)) β (πβπ₯) β (πβ(πβπ¦))) & β’ ((π β§ π₯ β πΌ) β ((πβπ₯) β© (πΎββͺ (π β (πΌ β {π₯})))) β { 0 }) β β’ (π β πΊdom DProd π) | ||
Theorem | dprddomprc 19961 | A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
β’ (dom π β V β Β¬ πΊdom DProd π) | ||
Theorem | dprddomcld 19962 | If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) β β’ (π β πΌ β V) | ||
Theorem | dprdval0prc 19963 | The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
β’ (dom π β V β (πΊ DProd π) = β ) | ||
Theorem | dprdval 19964* | The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } β β’ ((πΊdom DProd π β§ dom π = πΌ) β (πΊ DProd π) = ran (π β π β¦ (πΊ Ξ£g π))) | ||
Theorem | eldprd 19965* | A class π΄ is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } β β’ (dom π = πΌ β (π΄ β (πΊ DProd π) β (πΊdom DProd π β§ βπ β π π΄ = (πΊ Ξ£g π)))) | ||
Theorem | dprdgrp 19966 | Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (πΊdom DProd π β πΊ β Grp) | ||
Theorem | dprdf 19967 | The function π is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (πΊdom DProd π β π:dom πβΆ(SubGrpβπΊ)) | ||
Theorem | dprdf2 19968 | The function π is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) β β’ (π β π:πΌβΆ(SubGrpβπΊ)) | ||
Theorem | dprdcntz 19969 | The function π is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) & β’ (π β π β πΌ) & β’ (π β π β π) & β’ π = (CntzβπΊ) β β’ (π β (πβπ) β (πβ(πβπ))) | ||
Theorem | dprddisj 19970 | The function π is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) & β’ 0 = (0gβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ (π β ((πβπ) β© (πΎββͺ (π β (πΌ β {π})))) = { 0 }) | ||
Theorem | dprdw 19971* | The property of being a finitely supported function in the family π. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) β β’ (π β (πΉ β π β (πΉ Fn πΌ β§ βπ₯ β πΌ (πΉβπ₯) β (πβπ₯) β§ πΉ finSupp 0 ))) | ||
Theorem | dprdwd 19972* | A mapping being a finitely supported function in the family π. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ ((π β§ π₯ β πΌ) β π΄ β (πβπ₯)) & β’ (π β (π₯ β πΌ β¦ π΄) finSupp 0 ) β β’ (π β (π₯ β πΌ β¦ π΄) β π) | ||
Theorem | dprdff 19973* | A finitely supported function in π is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ π΅ = (BaseβπΊ) β β’ (π β πΉ:πΌβΆπ΅) | ||
Theorem | dprdfcl 19974* | A finitely supported function in π has its π-th element in π(π). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ ((π β§ π β πΌ) β (πΉβπ) β (πβπ)) | ||
Theorem | dprdffsupp 19975* | A finitely supported function in π is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ (π β πΉ finSupp 0 ) | ||
Theorem | dprdfcntz 19976* | A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ π = (CntzβπΊ) β β’ (π β ran πΉ β (πβran πΉ)) | ||
Theorem | dprdssv 19977 | The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ π΅ = (BaseβπΊ) β β’ (πΊ DProd π) β π΅ | ||
Theorem | dprdfid 19978* | A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) & β’ (π β π΄ β (πβπ)) & β’ πΉ = (π β πΌ β¦ if(π = π, π΄, 0 )) β β’ (π β (πΉ β π β§ (πΊ Ξ£g πΉ) = π΄)) | ||
Theorem | eldprdi 19979* | The domain of definition of the internal direct product, which states that π is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ (π β (πΊ Ξ£g πΉ) β (πΊ DProd π)) | ||
Theorem | dprdfinv 19980* | Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ π = (invgβπΊ) β β’ (π β ((π β πΉ) β π β§ (πΊ Ξ£g (π β πΉ)) = (πβ(πΊ Ξ£g πΉ)))) | ||
Theorem | dprdfadd 19981* | Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ + = (+gβπΊ) β β’ (π β ((πΉ βf + π») β π β§ (πΊ Ξ£g (πΉ βf + π»)) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»)))) | ||
Theorem | dprdfsub 19982* | Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ β = (-gβπΊ) β β’ (π β ((πΉ βf β π») β π β§ (πΊ Ξ£g (πΉ βf β π»)) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»)))) | ||
Theorem | dprdfeq0 19983* | The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ (π β ((πΊ Ξ£g πΉ) = 0 β πΉ = (π₯ β πΌ β¦ 0 ))) | ||
Theorem | dprdf11 19984* | Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ (π β π» β π) β β’ (π β ((πΊ Ξ£g πΉ) = (πΊ Ξ£g π») β πΉ = π»)) | ||
Theorem | dprdsubg 19985 | The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (πΊdom DProd π β (πΊ DProd π) β (SubGrpβπΊ)) | ||
Theorem | dprdub 19986 | Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) β β’ (π β (πβπ) β (πΊ DProd π)) | ||
Theorem | dprdlub 19987* | The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β (SubGrpβπΊ)) & β’ ((π β§ π β πΌ) β (πβπ) β π) β β’ (π β (πΊ DProd π) β π) | ||
Theorem | dprdspan 19988 | The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ (πΊdom DProd π β (πΊ DProd π) = (πΎββͺ ran π)) | ||
Theorem | dprdres 19989 | Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π΄ β πΌ) β β’ (π β (πΊdom DProd (π βΎ π΄) β§ (πΊ DProd (π βΎ π΄)) β (πΊ DProd π))) | ||
Theorem | dprdss 19990* | Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π:πΌβΆ(SubGrpβπΊ)) & β’ ((π β§ π β πΌ) β (πβπ) β (πβπ)) β β’ (π β (πΊdom DProd π β§ (πΊ DProd π) β (πΊ DProd π))) | ||
Theorem | dprdz 19991* | A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ 0 = (0gβπΊ) β β’ ((πΊ β Grp β§ πΌ β π) β (πΊdom DProd (π₯ β πΌ β¦ { 0 }) β§ (πΊ DProd (π₯ β πΌ β¦ { 0 })) = { 0 })) | ||
Theorem | dprd0 19992 | The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ 0 = (0gβπΊ) β β’ (πΊ β Grp β (πΊdom DProd β β§ (πΊ DProd β ) = { 0 })) | ||
Theorem | dprdf1o 19993 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ:π½β1-1-ontoβπΌ) β β’ (π β (πΊdom DProd (π β πΉ) β§ (πΊ DProd (π β πΉ)) = (πΊ DProd π))) | ||
Theorem | dprdf1 19994 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ:π½β1-1βπΌ) β β’ (π β (πΊdom DProd (π β πΉ) β§ (πΊ DProd (π β πΉ)) β (πΊ DProd π))) | ||
Theorem | subgdmdprd 19995 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
β’ π» = (πΊ βΎs π΄) β β’ (π΄ β (SubGrpβπΊ) β (π»dom DProd π β (πΊdom DProd π β§ ran π β π« π΄))) | ||
Theorem | subgdprd 19996 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
β’ π» = (πΊ βΎs π΄) & β’ (π β π΄ β (SubGrpβπΊ)) & β’ (π β πΊdom DProd π) & β’ (π β ran π β π« π΄) β β’ (π β (π» DProd π) = (πΊ DProd π)) | ||
Theorem | dprdsn 19997 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β (πΊdom DProd {β¨π΄, πβ©} β§ (πΊ DProd {β¨π΄, πβ©}) = π)) | ||
Theorem | dmdprdsplitlem 19998* | Lemma for dmdprdsplit 20008. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π΄ β πΌ) & β’ (π β πΉ β π) & β’ (π β (πΊ Ξ£g πΉ) β (πΊ DProd (π βΎ π΄))) β β’ ((π β§ π β (πΌ β π΄)) β (πΉβπ) = 0 ) | ||
Theorem | dprdcntz2 19999 | The function π is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΆ β πΌ) & β’ (π β π· β πΌ) & β’ (π β (πΆ β© π·) = β ) & β’ π = (CntzβπΊ) β β’ (π β (πΊ DProd (π βΎ πΆ)) β (πβ(πΊ DProd (π βΎ π·)))) | ||
Theorem | dprddisj2 20000 | The function π is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΆ β πΌ) & β’ (π β π· β πΌ) & β’ (π β (πΆ β© π·) = β ) & β’ 0 = (0gβπΊ) β β’ (π β ((πΊ DProd (π βΎ πΆ)) β© (πΊ DProd (π βΎ π·))) = { 0 }) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |