| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > issubgoilem | Structured version Visualization version GIF version | ||
| Description: Lemma for hhssabloilem 31190. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| issubgoilem.1 | ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) |
| Ref | Expression |
|---|---|
| issubgoilem | ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
| 2 | oveq1 7394 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
| 3 | 1, 2 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑥𝐺𝑦) ↔ (𝐴𝐻𝑦) = (𝐴𝐺𝑦))) |
| 4 | oveq2 7395 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
| 5 | oveq2 7395 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
| 6 | 4, 5 | eqeq12d 2745 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝐴𝐺𝑦) ↔ (𝐴𝐻𝐵) = (𝐴𝐺𝐵))) |
| 7 | issubgoilem.1 | . 2 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) | |
| 8 | 3, 6, 7 | vtocl2ga 3544 | 1 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |