![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issubgoilem | Structured version Visualization version GIF version |
Description: Lemma for hhssabloilem 31188. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issubgoilem.1 | ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) |
Ref | Expression |
---|---|
issubgoilem | ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7420 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
2 | oveq1 7420 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
3 | 1, 2 | eqeq12d 2742 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑥𝐺𝑦) ↔ (𝐴𝐻𝑦) = (𝐴𝐺𝑦))) |
4 | oveq2 7421 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
5 | oveq2 7421 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
6 | 4, 5 | eqeq12d 2742 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝐴𝐺𝑦) ↔ (𝐴𝐻𝐵) = (𝐴𝐺𝐵))) |
7 | issubgoilem.1 | . 2 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) | |
8 | 3, 6, 7 | vtocl2ga 3558 | 1 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 (class class class)co 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-iota 6495 df-fv 6551 df-ov 7416 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |