![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issubgoilem | Structured version Visualization version GIF version |
Description: Lemma for hhssabloilem 30983. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issubgoilem.1 | ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) |
Ref | Expression |
---|---|
issubgoilem | ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7408 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
2 | oveq1 7408 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
3 | 1, 2 | eqeq12d 2740 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑥𝐺𝑦) ↔ (𝐴𝐻𝑦) = (𝐴𝐺𝑦))) |
4 | oveq2 7409 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
5 | oveq2 7409 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
6 | 4, 5 | eqeq12d 2740 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝐴𝐺𝑦) ↔ (𝐴𝐻𝐵) = (𝐴𝐺𝐵))) |
7 | issubgoilem.1 | . 2 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) | |
8 | 3, 6, 7 | vtocl2ga 3559 | 1 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 (class class class)co 7401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |