HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issubgoilem Structured version   Visualization version   GIF version

Theorem issubgoilem 31305
Description: Lemma for hhssabloilem 31306. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
issubgoilem.1 ((𝑥𝑌𝑦𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦))
Assertion
Ref Expression
issubgoilem ((𝐴𝑌𝐵𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑌,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem issubgoilem
StepHypRef Expression
1 oveq1 7445 . . 3 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
2 oveq1 7445 . . 3 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
31, 2eqeq12d 2753 . 2 (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑥𝐺𝑦) ↔ (𝐴𝐻𝑦) = (𝐴𝐺𝑦)))
4 oveq2 7446 . . 3 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
5 oveq2 7446 . . 3 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
64, 5eqeq12d 2753 . 2 (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝐴𝐺𝑦) ↔ (𝐴𝐻𝐵) = (𝐴𝐺𝐵)))
7 issubgoilem.1 . 2 ((𝑥𝑌𝑦𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦))
83, 6, 7vtocl2ga 3581 1 ((𝐴𝑌𝐵𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  (class class class)co 7438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator