HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloilem Structured version   Visualization version   GIF version

Theorem hhssabloilem 31290
Description: Lemma for hhssabloi 31291. Formerly part of proof for hhssabloi 31291 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1 𝐻S
Assertion
Ref Expression
hhssabloilem ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )

Proof of Theorem hhssabloilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 31189 . . 3 + ∈ AbelOp
2 ablogrpo 30576 . . 3 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . 2 + ∈ GrpOp
4 hhssabl.1 . . . 4 𝐻S
54elexi 3501 . . 3 𝐻 ∈ V
6 eqid 2735 . . . . . . . 8 ran + = ran +
76grpofo 30528 . . . . . . 7 ( + ∈ GrpOp → + :(ran + × ran + )–onto→ran + )
8 fof 6821 . . . . . . 7 ( + :(ran + × ran + )–onto→ran + → + :(ran + × ran + )⟶ran + )
93, 7, 8mp2b 10 . . . . . 6 + :(ran + × ran + )⟶ran +
104shssii 31242 . . . . . . . 8 𝐻 ⊆ ℋ
11 df-hba 30998 . . . . . . . . 9 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2735 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1312hhva 31195 . . . . . . . . 9 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1411, 13bafval 30633 . . . . . . . 8 ℋ = ran +
1510, 14sseqtri 4032 . . . . . . 7 𝐻 ⊆ ran +
16 xpss12 5704 . . . . . . 7 ((𝐻 ⊆ ran +𝐻 ⊆ ran + ) → (𝐻 × 𝐻) ⊆ (ran + × ran + ))
1715, 15, 16mp2an 692 . . . . . 6 (𝐻 × 𝐻) ⊆ (ran + × ran + )
18 fssres 6775 . . . . . 6 (( + :(ran + × ran + )⟶ran + ∧ (𝐻 × 𝐻) ⊆ (ran + × ran + )) → ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + )
199, 17, 18mp2an 692 . . . . 5 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran +
20 ffn 6737 . . . . 5 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + → ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻))
2119, 20ax-mp 5 . . . 4 ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻)
22 ovres 7599 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
23 shaddcl 31246 . . . . . . 7 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
244, 23mp3an1 1447 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2522, 24eqeltrd 2839 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻)
2625rgen2 3197 . . . 4 𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻
27 ffnov 7559 . . . 4 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 ↔ (( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻) ∧ ∀𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻))
2821, 26, 27mpbir2an 711 . . 3 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻
2922oveq1d 7446 . . . . 5 ((𝑥𝐻𝑦𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
30293adant3 1131 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
31 ovres 7599 . . . . 5 (((𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
3225, 31stoic3 1773 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
33 ovres 7599 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) = (𝑦 + 𝑧))
3433oveq2d 7447 . . . . . 6 ((𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
35343adant1 1129 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
3628fovcl 7561 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻)
37 ovres 7599 . . . . . . 7 ((𝑥𝐻 ∧ (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
3836, 37sylan2 593 . . . . . 6 ((𝑥𝐻 ∧ (𝑦𝐻𝑧𝐻)) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
39383impb 1114 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
4015sseli 3991 . . . . . 6 (𝑥𝐻𝑥 ∈ ran + )
4115sseli 3991 . . . . . 6 (𝑦𝐻𝑦 ∈ ran + )
4215sseli 3991 . . . . . 6 (𝑧𝐻𝑧 ∈ ran + )
436grpoass 30532 . . . . . . 7 (( + ∈ GrpOp ∧ (𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + )) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
443, 43mpan 690 . . . . . 6 ((𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4540, 41, 42, 44syl3an 1159 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4635, 39, 453eqtr4d 2785 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑥 + 𝑦) + 𝑧))
4730, 32, 463eqtr4d 2785 . . 3 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
48 hilid 31190 . . . 4 (GId‘ + ) = 0
49 sh0 31245 . . . . 5 (𝐻S → 0𝐻)
504, 49ax-mp 5 . . . 4 0𝐻
5148, 50eqeltri 2835 . . 3 (GId‘ + ) ∈ 𝐻
52 ovres 7599 . . . . 5 (((GId‘ + ) ∈ 𝐻𝑥𝐻) → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
5351, 52mpan 690 . . . 4 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
54 eqid 2735 . . . . . 6 (GId‘ + ) = (GId‘ + )
556, 54grpolid 30545 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → ((GId‘ + ) + 𝑥) = 𝑥)
563, 40, 55sylancr 587 . . . 4 (𝑥𝐻 → ((GId‘ + ) + 𝑥) = 𝑥)
5753, 56eqtrd 2775 . . 3 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = 𝑥)
5812hhnv 31194 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
5912hhsm 31198 . . . . . . . 8 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
60 eqid 2735 . . . . . . . 8 ( ·(2nd ↾ ({-1} × V))) = ( ·(2nd ↾ ({-1} × V)))
6113, 59, 60nvinvfval 30669 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( ·(2nd ↾ ({-1} × V))) = (inv‘ + ))
6258, 61ax-mp 5 . . . . . 6 ( ·(2nd ↾ ({-1} × V))) = (inv‘ + )
6362eqcomi 2744 . . . . 5 (inv‘ + ) = ( ·(2nd ↾ ({-1} × V)))
6463fveq1i 6908 . . . 4 ((inv‘ + )‘𝑥) = (( ·(2nd ↾ ({-1} × V)))‘𝑥)
65 ax-hfvmul 31034 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
66 ffn 6737 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
6765, 66ax-mp 5 . . . . . 6 · Fn (ℂ × ℋ)
68 neg1cn 12378 . . . . . 6 -1 ∈ ℂ
6960curry1val 8129 . . . . . 6 (( · Fn (ℂ × ℋ) ∧ -1 ∈ ℂ) → (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥))
7067, 68, 69mp2an 692 . . . . 5 (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥)
71 shmulcl 31247 . . . . . 6 ((𝐻S ∧ -1 ∈ ℂ ∧ 𝑥𝐻) → (-1 · 𝑥) ∈ 𝐻)
724, 68, 71mp3an12 1450 . . . . 5 (𝑥𝐻 → (-1 · 𝑥) ∈ 𝐻)
7370, 72eqeltrid 2843 . . . 4 (𝑥𝐻 → (( ·(2nd ↾ ({-1} × V)))‘𝑥) ∈ 𝐻)
7464, 73eqeltrid 2843 . . 3 (𝑥𝐻 → ((inv‘ + )‘𝑥) ∈ 𝐻)
75 ovres 7599 . . . . 5 ((((inv‘ + )‘𝑥) ∈ 𝐻𝑥𝐻) → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
7674, 75mpancom 688 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
77 eqid 2735 . . . . . 6 (inv‘ + ) = (inv‘ + )
786, 54, 77grpolinv 30555 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
793, 40, 78sylancr 587 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
8076, 79eqtrd 2775 . . 3 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (GId‘ + ))
815, 28, 47, 51, 57, 74, 80isgrpoi 30527 . 2 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
82 resss 6022 . 2 ( + ↾ (𝐻 × 𝐻)) ⊆ +
833, 81, 823pm3.2i 1338 1 ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  {csn 4631  cop 4637   × cxp 5687  ccnv 5688  ran crn 5690  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  2nd c2nd 8012  cc 11151  1c1 11154  -cneg 11491  GrpOpcgr 30518  GIdcgi 30519  invcgn 30520  AbelOpcablo 30573  NrmCVeccnv 30613  chba 30948   + cva 30949   · csm 30950  normcno 30952  0c0v 30953   S csh 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-grpo 30522  df-gid 30523  df-ginv 30524  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-sh 31236
This theorem is referenced by:  hhssabloi  31291
  Copyright terms: Public domain W3C validator