HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloilem Structured version   Visualization version   GIF version

Theorem hhssabloilem 30203
Description: Lemma for hhssabloi 30204. Formerly part of proof for hhssabloi 30204 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1 𝐻S
Assertion
Ref Expression
hhssabloilem ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )

Proof of Theorem hhssabloilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 30102 . . 3 + ∈ AbelOp
2 ablogrpo 29489 . . 3 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . 2 + ∈ GrpOp
4 hhssabl.1 . . . 4 𝐻S
54elexi 3464 . . 3 𝐻 ∈ V
6 eqid 2736 . . . . . . . 8 ran + = ran +
76grpofo 29441 . . . . . . 7 ( + ∈ GrpOp → + :(ran + × ran + )–onto→ran + )
8 fof 6756 . . . . . . 7 ( + :(ran + × ran + )–onto→ran + → + :(ran + × ran + )⟶ran + )
93, 7, 8mp2b 10 . . . . . 6 + :(ran + × ran + )⟶ran +
104shssii 30155 . . . . . . . 8 𝐻 ⊆ ℋ
11 df-hba 29911 . . . . . . . . 9 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2736 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1312hhva 30108 . . . . . . . . 9 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1411, 13bafval 29546 . . . . . . . 8 ℋ = ran +
1510, 14sseqtri 3980 . . . . . . 7 𝐻 ⊆ ran +
16 xpss12 5648 . . . . . . 7 ((𝐻 ⊆ ran +𝐻 ⊆ ran + ) → (𝐻 × 𝐻) ⊆ (ran + × ran + ))
1715, 15, 16mp2an 690 . . . . . 6 (𝐻 × 𝐻) ⊆ (ran + × ran + )
18 fssres 6708 . . . . . 6 (( + :(ran + × ran + )⟶ran + ∧ (𝐻 × 𝐻) ⊆ (ran + × ran + )) → ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + )
199, 17, 18mp2an 690 . . . . 5 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran +
20 ffn 6668 . . . . 5 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + → ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻))
2119, 20ax-mp 5 . . . 4 ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻)
22 ovres 7520 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
23 shaddcl 30159 . . . . . . 7 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
244, 23mp3an1 1448 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2522, 24eqeltrd 2838 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻)
2625rgen2 3194 . . . 4 𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻
27 ffnov 7483 . . . 4 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 ↔ (( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻) ∧ ∀𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻))
2821, 26, 27mpbir2an 709 . . 3 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻
2922oveq1d 7372 . . . . 5 ((𝑥𝐻𝑦𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
30293adant3 1132 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
31 ovres 7520 . . . . 5 (((𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
3225, 31stoic3 1778 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
33 ovres 7520 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) = (𝑦 + 𝑧))
3433oveq2d 7373 . . . . . 6 ((𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
35343adant1 1130 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
3628fovcl 7484 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻)
37 ovres 7520 . . . . . . 7 ((𝑥𝐻 ∧ (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
3836, 37sylan2 593 . . . . . 6 ((𝑥𝐻 ∧ (𝑦𝐻𝑧𝐻)) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
39383impb 1115 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
4015sseli 3940 . . . . . 6 (𝑥𝐻𝑥 ∈ ran + )
4115sseli 3940 . . . . . 6 (𝑦𝐻𝑦 ∈ ran + )
4215sseli 3940 . . . . . 6 (𝑧𝐻𝑧 ∈ ran + )
436grpoass 29445 . . . . . . 7 (( + ∈ GrpOp ∧ (𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + )) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
443, 43mpan 688 . . . . . 6 ((𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4540, 41, 42, 44syl3an 1160 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4635, 39, 453eqtr4d 2786 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑥 + 𝑦) + 𝑧))
4730, 32, 463eqtr4d 2786 . . 3 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
48 hilid 30103 . . . 4 (GId‘ + ) = 0
49 sh0 30158 . . . . 5 (𝐻S → 0𝐻)
504, 49ax-mp 5 . . . 4 0𝐻
5148, 50eqeltri 2834 . . 3 (GId‘ + ) ∈ 𝐻
52 ovres 7520 . . . . 5 (((GId‘ + ) ∈ 𝐻𝑥𝐻) → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
5351, 52mpan 688 . . . 4 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
54 eqid 2736 . . . . . 6 (GId‘ + ) = (GId‘ + )
556, 54grpolid 29458 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → ((GId‘ + ) + 𝑥) = 𝑥)
563, 40, 55sylancr 587 . . . 4 (𝑥𝐻 → ((GId‘ + ) + 𝑥) = 𝑥)
5753, 56eqtrd 2776 . . 3 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = 𝑥)
5812hhnv 30107 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
5912hhsm 30111 . . . . . . . 8 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
60 eqid 2736 . . . . . . . 8 ( ·(2nd ↾ ({-1} × V))) = ( ·(2nd ↾ ({-1} × V)))
6113, 59, 60nvinvfval 29582 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( ·(2nd ↾ ({-1} × V))) = (inv‘ + ))
6258, 61ax-mp 5 . . . . . 6 ( ·(2nd ↾ ({-1} × V))) = (inv‘ + )
6362eqcomi 2745 . . . . 5 (inv‘ + ) = ( ·(2nd ↾ ({-1} × V)))
6463fveq1i 6843 . . . 4 ((inv‘ + )‘𝑥) = (( ·(2nd ↾ ({-1} × V)))‘𝑥)
65 ax-hfvmul 29947 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
66 ffn 6668 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
6765, 66ax-mp 5 . . . . . 6 · Fn (ℂ × ℋ)
68 neg1cn 12267 . . . . . 6 -1 ∈ ℂ
6960curry1val 8037 . . . . . 6 (( · Fn (ℂ × ℋ) ∧ -1 ∈ ℂ) → (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥))
7067, 68, 69mp2an 690 . . . . 5 (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥)
71 shmulcl 30160 . . . . . 6 ((𝐻S ∧ -1 ∈ ℂ ∧ 𝑥𝐻) → (-1 · 𝑥) ∈ 𝐻)
724, 68, 71mp3an12 1451 . . . . 5 (𝑥𝐻 → (-1 · 𝑥) ∈ 𝐻)
7370, 72eqeltrid 2842 . . . 4 (𝑥𝐻 → (( ·(2nd ↾ ({-1} × V)))‘𝑥) ∈ 𝐻)
7464, 73eqeltrid 2842 . . 3 (𝑥𝐻 → ((inv‘ + )‘𝑥) ∈ 𝐻)
75 ovres 7520 . . . . 5 ((((inv‘ + )‘𝑥) ∈ 𝐻𝑥𝐻) → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
7674, 75mpancom 686 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
77 eqid 2736 . . . . . 6 (inv‘ + ) = (inv‘ + )
786, 54, 77grpolinv 29468 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
793, 40, 78sylancr 587 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
8076, 79eqtrd 2776 . . 3 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (GId‘ + ))
815, 28, 47, 51, 57, 74, 80isgrpoi 29440 . 2 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
82 resss 5962 . 2 ( + ↾ (𝐻 × 𝐻)) ⊆ +
833, 81, 823pm3.2i 1339 1 ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  {csn 4586  cop 4592   × cxp 5631  ccnv 5632  ran crn 5634  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  2nd c2nd 7920  cc 11049  1c1 11052  -cneg 11386  GrpOpcgr 29431  GIdcgi 29432  invcgn 29433  AbelOpcablo 29486  NrmCVeccnv 29526  chba 29861   + cva 29862   · csm 29863  normcno 29865  0c0v 29866   S csh 29870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-nmcv 29542  df-hnorm 29910  df-hba 29911  df-hvsub 29913  df-sh 30149
This theorem is referenced by:  hhssabloi  30204
  Copyright terms: Public domain W3C validator