Step | Hyp | Ref
| Expression |
1 | | hilablo 29531 |
. . 3
⊢
+ℎ ∈ AbelOp |
2 | | ablogrpo 28918 |
. . 3
⊢ (
+ℎ ∈ AbelOp → +ℎ ∈
GrpOp) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢
+ℎ ∈ GrpOp |
4 | | hhssabl.1 |
. . . 4
⊢ 𝐻 ∈
Sℋ |
5 | 4 | elexi 3450 |
. . 3
⊢ 𝐻 ∈ V |
6 | | eqid 2740 |
. . . . . . . 8
⊢ ran
+ℎ = ran +ℎ |
7 | 6 | grpofo 28870 |
. . . . . . 7
⊢ (
+ℎ ∈ GrpOp → +ℎ :(ran
+ℎ × ran +ℎ )–onto→ran +ℎ ) |
8 | | fof 6686 |
. . . . . . 7
⊢ (
+ℎ :(ran +ℎ × ran
+ℎ )–onto→ran
+ℎ → +ℎ :(ran +ℎ
× ran +ℎ )⟶ran +ℎ
) |
9 | 3, 7, 8 | mp2b 10 |
. . . . . 6
⊢
+ℎ :(ran +ℎ × ran
+ℎ )⟶ran +ℎ |
10 | 4 | shssii 29584 |
. . . . . . . 8
⊢ 𝐻 ⊆
ℋ |
11 | | df-hba 29340 |
. . . . . . . . 9
⊢ ℋ
= (BaseSet‘〈〈 +ℎ ,
·ℎ 〉,
normℎ〉) |
12 | | eqid 2740 |
. . . . . . . . . 10
⊢
〈〈 +ℎ , ·ℎ
〉, normℎ〉 = 〈〈 +ℎ ,
·ℎ 〉,
normℎ〉 |
13 | 12 | hhva 29537 |
. . . . . . . . 9
⊢
+ℎ = ( +𝑣 ‘〈〈
+ℎ , ·ℎ 〉,
normℎ〉) |
14 | 11, 13 | bafval 28975 |
. . . . . . . 8
⊢ ℋ
= ran +ℎ |
15 | 10, 14 | sseqtri 3962 |
. . . . . . 7
⊢ 𝐻 ⊆ ran
+ℎ |
16 | | xpss12 5605 |
. . . . . . 7
⊢ ((𝐻 ⊆ ran
+ℎ ∧ 𝐻 ⊆ ran +ℎ ) →
(𝐻 × 𝐻) ⊆ (ran
+ℎ × ran +ℎ )) |
17 | 15, 15, 16 | mp2an 689 |
. . . . . 6
⊢ (𝐻 × 𝐻) ⊆ (ran +ℎ ×
ran +ℎ ) |
18 | | fssres 6638 |
. . . . . 6
⊢ ((
+ℎ :(ran +ℎ × ran
+ℎ )⟶ran +ℎ ∧ (𝐻 × 𝐻) ⊆ (ran +ℎ ×
ran +ℎ )) → ( +ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran +ℎ
) |
19 | 9, 17, 18 | mp2an 689 |
. . . . 5
⊢ (
+ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran
+ℎ |
20 | | ffn 6598 |
. . . . 5
⊢ ((
+ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran +ℎ → (
+ℎ ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻)) |
21 | 19, 20 | ax-mp 5 |
. . . 4
⊢ (
+ℎ ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻) |
22 | | ovres 7433 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑥 +ℎ 𝑦)) |
23 | | shaddcl 29588 |
. . . . . . 7
⊢ ((𝐻 ∈
Sℋ ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
24 | 4, 23 | mp3an1 1447 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
25 | 22, 24 | eqeltrd 2841 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻) |
26 | 25 | rgen2 3129 |
. . . 4
⊢
∀𝑥 ∈
𝐻 ∀𝑦 ∈ 𝐻 (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻 |
27 | | ffnov 7396 |
. . . 4
⊢ ((
+ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 ↔ (( +ℎ ↾
(𝐻 × 𝐻)) Fn (𝐻 × 𝐻) ∧ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻)) |
28 | 21, 26, 27 | mpbir2an 708 |
. . 3
⊢ (
+ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 |
29 | 22 | oveq1d 7287 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) +ℎ 𝑧) = ((𝑥 +ℎ 𝑦) +ℎ 𝑧)) |
30 | 29 | 3adant3 1131 |
. . . 4
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) +ℎ 𝑧) = ((𝑥 +ℎ 𝑦) +ℎ 𝑧)) |
31 | | ovres 7433 |
. . . . 5
⊢ (((𝑥( +ℎ ↾
(𝐻 × 𝐻))𝑦) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦)( +ℎ ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) +ℎ 𝑧)) |
32 | 25, 31 | stoic3 1783 |
. . . 4
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦)( +ℎ ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) +ℎ 𝑧)) |
33 | | ovres 7433 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧) = (𝑦 +ℎ 𝑧)) |
34 | 33 | oveq2d 7288 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → (𝑥 +ℎ (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) |
35 | 34 | 3adant1 1129 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → (𝑥 +ℎ (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) |
36 | 28 | fovcl 7397 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻) |
37 | | ovres 7433 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐻 ∧ (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))(𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 +ℎ (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧))) |
38 | 36, 37 | sylan2 593 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐻 ∧ (𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))(𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 +ℎ (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧))) |
39 | 38 | 3impb 1114 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))(𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 +ℎ (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧))) |
40 | 15 | sseli 3922 |
. . . . . 6
⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ran +ℎ
) |
41 | 15 | sseli 3922 |
. . . . . 6
⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ran +ℎ
) |
42 | 15 | sseli 3922 |
. . . . . 6
⊢ (𝑧 ∈ 𝐻 → 𝑧 ∈ ran +ℎ
) |
43 | 6 | grpoass 28874 |
. . . . . . 7
⊢ ((
+ℎ ∈ GrpOp ∧ (𝑥 ∈ ran +ℎ ∧ 𝑦 ∈ ran +ℎ
∧ 𝑧 ∈ ran
+ℎ )) → ((𝑥 +ℎ 𝑦) +ℎ 𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) |
44 | 3, 43 | mpan 687 |
. . . . . 6
⊢ ((𝑥 ∈ ran +ℎ
∧ 𝑦 ∈ ran
+ℎ ∧ 𝑧 ∈ ran +ℎ ) →
((𝑥 +ℎ
𝑦) +ℎ
𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) |
45 | 40, 41, 42, 44 | syl3an 1159 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → ((𝑥 +ℎ 𝑦) +ℎ 𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) |
46 | 35, 39, 45 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))(𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧)) = ((𝑥 +ℎ 𝑦) +ℎ 𝑧)) |
47 | 30, 32, 46 | 3eqtr4d 2790 |
. . 3
⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻) → ((𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦)( +ℎ ↾ (𝐻 × 𝐻))𝑧) = (𝑥( +ℎ ↾ (𝐻 × 𝐻))(𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑧))) |
48 | | hilid 29532 |
. . . 4
⊢
(GId‘ +ℎ ) =
0ℎ |
49 | | sh0 29587 |
. . . . 5
⊢ (𝐻 ∈
Sℋ → 0ℎ ∈ 𝐻) |
50 | 4, 49 | ax-mp 5 |
. . . 4
⊢
0ℎ ∈ 𝐻 |
51 | 48, 50 | eqeltri 2837 |
. . 3
⊢
(GId‘ +ℎ ) ∈ 𝐻 |
52 | | ovres 7433 |
. . . . 5
⊢
(((GId‘ +ℎ ) ∈ 𝐻 ∧ 𝑥 ∈ 𝐻) → ((GId‘ +ℎ
)( +ℎ ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ +ℎ )
+ℎ 𝑥)) |
53 | 51, 52 | mpan 687 |
. . . 4
⊢ (𝑥 ∈ 𝐻 → ((GId‘ +ℎ )(
+ℎ ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ +ℎ )
+ℎ 𝑥)) |
54 | | eqid 2740 |
. . . . . 6
⊢
(GId‘ +ℎ ) = (GId‘ +ℎ
) |
55 | 6, 54 | grpolid 28887 |
. . . . 5
⊢ ((
+ℎ ∈ GrpOp ∧ 𝑥 ∈ ran +ℎ ) →
((GId‘ +ℎ ) +ℎ 𝑥) = 𝑥) |
56 | 3, 40, 55 | sylancr 587 |
. . . 4
⊢ (𝑥 ∈ 𝐻 → ((GId‘ +ℎ )
+ℎ 𝑥) =
𝑥) |
57 | 53, 56 | eqtrd 2780 |
. . 3
⊢ (𝑥 ∈ 𝐻 → ((GId‘ +ℎ )(
+ℎ ↾ (𝐻 × 𝐻))𝑥) = 𝑥) |
58 | 12 | hhnv 29536 |
. . . . . . 7
⊢
〈〈 +ℎ , ·ℎ
〉, normℎ〉 ∈ NrmCVec |
59 | 12 | hhsm 29540 |
. . . . . . . 8
⊢
·ℎ = ( ·𝑠OLD
‘〈〈 +ℎ , ·ℎ
〉, normℎ〉) |
60 | | eqid 2740 |
. . . . . . . 8
⊢ (
·ℎ ∘ ◡(2nd ↾ ({-1} × V))) =
( ·ℎ ∘ ◡(2nd ↾ ({-1} ×
V))) |
61 | 13, 59, 60 | nvinvfval 29011 |
. . . . . . 7
⊢
(〈〈 +ℎ , ·ℎ
〉, normℎ〉 ∈ NrmCVec → (
·ℎ ∘ ◡(2nd ↾ ({-1} × V))) =
(inv‘ +ℎ )) |
62 | 58, 61 | ax-mp 5 |
. . . . . 6
⊢ (
·ℎ ∘ ◡(2nd ↾ ({-1} × V))) =
(inv‘ +ℎ ) |
63 | 62 | eqcomi 2749 |
. . . . 5
⊢
(inv‘ +ℎ ) = (
·ℎ ∘ ◡(2nd ↾ ({-1} ×
V))) |
64 | 63 | fveq1i 6772 |
. . . 4
⊢
((inv‘ +ℎ )‘𝑥) = (( ·ℎ
∘ ◡(2nd ↾ ({-1}
× V)))‘𝑥) |
65 | | ax-hfvmul 29376 |
. . . . . . 7
⊢
·ℎ :(ℂ × ℋ)⟶
ℋ |
66 | | ffn 6598 |
. . . . . . 7
⊢ (
·ℎ :(ℂ × ℋ)⟶ ℋ
→ ·ℎ Fn (ℂ ×
ℋ)) |
67 | 65, 66 | ax-mp 5 |
. . . . . 6
⊢
·ℎ Fn (ℂ ×
ℋ) |
68 | | neg1cn 12098 |
. . . . . 6
⊢ -1 ∈
ℂ |
69 | 60 | curry1val 7937 |
. . . . . 6
⊢ ((
·ℎ Fn (ℂ × ℋ) ∧ -1 ∈
ℂ) → (( ·ℎ ∘ ◡(2nd ↾ ({-1} ×
V)))‘𝑥) = (-1
·ℎ 𝑥)) |
70 | 67, 68, 69 | mp2an 689 |
. . . . 5
⊢ ((
·ℎ ∘ ◡(2nd ↾ ({-1} ×
V)))‘𝑥) = (-1
·ℎ 𝑥) |
71 | | shmulcl 29589 |
. . . . . 6
⊢ ((𝐻 ∈
Sℋ ∧ -1 ∈ ℂ ∧ 𝑥 ∈ 𝐻) → (-1
·ℎ 𝑥) ∈ 𝐻) |
72 | 4, 68, 71 | mp3an12 1450 |
. . . . 5
⊢ (𝑥 ∈ 𝐻 → (-1
·ℎ 𝑥) ∈ 𝐻) |
73 | 70, 72 | eqeltrid 2845 |
. . . 4
⊢ (𝑥 ∈ 𝐻 → ((
·ℎ ∘ ◡(2nd ↾ ({-1} ×
V)))‘𝑥) ∈ 𝐻) |
74 | 64, 73 | eqeltrid 2845 |
. . 3
⊢ (𝑥 ∈ 𝐻 → ((inv‘ +ℎ
)‘𝑥) ∈ 𝐻) |
75 | | ovres 7433 |
. . . . 5
⊢
((((inv‘ +ℎ )‘𝑥) ∈ 𝐻 ∧ 𝑥 ∈ 𝐻) → (((inv‘ +ℎ
)‘𝑥)(
+ℎ ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ +ℎ
)‘𝑥)
+ℎ 𝑥)) |
76 | 74, 75 | mpancom 685 |
. . . 4
⊢ (𝑥 ∈ 𝐻 → (((inv‘ +ℎ
)‘𝑥)(
+ℎ ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ +ℎ
)‘𝑥)
+ℎ 𝑥)) |
77 | | eqid 2740 |
. . . . . 6
⊢
(inv‘ +ℎ ) = (inv‘ +ℎ
) |
78 | 6, 54, 77 | grpolinv 28897 |
. . . . 5
⊢ ((
+ℎ ∈ GrpOp ∧ 𝑥 ∈ ran +ℎ ) →
(((inv‘ +ℎ )‘𝑥) +ℎ 𝑥) = (GId‘ +ℎ
)) |
79 | 3, 40, 78 | sylancr 587 |
. . . 4
⊢ (𝑥 ∈ 𝐻 → (((inv‘ +ℎ
)‘𝑥)
+ℎ 𝑥) =
(GId‘ +ℎ )) |
80 | 76, 79 | eqtrd 2780 |
. . 3
⊢ (𝑥 ∈ 𝐻 → (((inv‘ +ℎ
)‘𝑥)(
+ℎ ↾ (𝐻 × 𝐻))𝑥) = (GId‘ +ℎ
)) |
81 | 5, 28, 47, 51, 57, 74, 80 | isgrpoi 28869 |
. 2
⊢ (
+ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp |
82 | | resss 5915 |
. 2
⊢ (
+ℎ ↾ (𝐻 × 𝐻)) ⊆
+ℎ |
83 | 3, 81, 82 | 3pm3.2i 1338 |
1
⊢ (
+ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ
↾ (𝐻 × 𝐻)) ⊆ +ℎ
) |