HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloilem Structured version   Visualization version   GIF version

Theorem hhssabloilem 29623
Description: Lemma for hhssabloi 29624. Formerly part of proof for hhssabloi 29624 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1 𝐻S
Assertion
Ref Expression
hhssabloilem ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )

Proof of Theorem hhssabloilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 29522 . . 3 + ∈ AbelOp
2 ablogrpo 28909 . . 3 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . 2 + ∈ GrpOp
4 hhssabl.1 . . . 4 𝐻S
54elexi 3451 . . 3 𝐻 ∈ V
6 eqid 2738 . . . . . . . 8 ran + = ran +
76grpofo 28861 . . . . . . 7 ( + ∈ GrpOp → + :(ran + × ran + )–onto→ran + )
8 fof 6688 . . . . . . 7 ( + :(ran + × ran + )–onto→ran + → + :(ran + × ran + )⟶ran + )
93, 7, 8mp2b 10 . . . . . 6 + :(ran + × ran + )⟶ran +
104shssii 29575 . . . . . . . 8 𝐻 ⊆ ℋ
11 df-hba 29331 . . . . . . . . 9 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2738 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1312hhva 29528 . . . . . . . . 9 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1411, 13bafval 28966 . . . . . . . 8 ℋ = ran +
1510, 14sseqtri 3957 . . . . . . 7 𝐻 ⊆ ran +
16 xpss12 5604 . . . . . . 7 ((𝐻 ⊆ ran +𝐻 ⊆ ran + ) → (𝐻 × 𝐻) ⊆ (ran + × ran + ))
1715, 15, 16mp2an 689 . . . . . 6 (𝐻 × 𝐻) ⊆ (ran + × ran + )
18 fssres 6640 . . . . . 6 (( + :(ran + × ran + )⟶ran + ∧ (𝐻 × 𝐻) ⊆ (ran + × ran + )) → ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + )
199, 17, 18mp2an 689 . . . . 5 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran +
20 ffn 6600 . . . . 5 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + → ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻))
2119, 20ax-mp 5 . . . 4 ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻)
22 ovres 7438 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
23 shaddcl 29579 . . . . . . 7 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
244, 23mp3an1 1447 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2522, 24eqeltrd 2839 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻)
2625rgen2 3120 . . . 4 𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻
27 ffnov 7401 . . . 4 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 ↔ (( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻) ∧ ∀𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻))
2821, 26, 27mpbir2an 708 . . 3 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻
2922oveq1d 7290 . . . . 5 ((𝑥𝐻𝑦𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
30293adant3 1131 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
31 ovres 7438 . . . . 5 (((𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
3225, 31stoic3 1779 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
33 ovres 7438 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) = (𝑦 + 𝑧))
3433oveq2d 7291 . . . . . 6 ((𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
35343adant1 1129 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
3628fovcl 7402 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻)
37 ovres 7438 . . . . . . 7 ((𝑥𝐻 ∧ (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
3836, 37sylan2 593 . . . . . 6 ((𝑥𝐻 ∧ (𝑦𝐻𝑧𝐻)) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
39383impb 1114 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
4015sseli 3917 . . . . . 6 (𝑥𝐻𝑥 ∈ ran + )
4115sseli 3917 . . . . . 6 (𝑦𝐻𝑦 ∈ ran + )
4215sseli 3917 . . . . . 6 (𝑧𝐻𝑧 ∈ ran + )
436grpoass 28865 . . . . . . 7 (( + ∈ GrpOp ∧ (𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + )) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
443, 43mpan 687 . . . . . 6 ((𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4540, 41, 42, 44syl3an 1159 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4635, 39, 453eqtr4d 2788 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑥 + 𝑦) + 𝑧))
4730, 32, 463eqtr4d 2788 . . 3 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
48 hilid 29523 . . . 4 (GId‘ + ) = 0
49 sh0 29578 . . . . 5 (𝐻S → 0𝐻)
504, 49ax-mp 5 . . . 4 0𝐻
5148, 50eqeltri 2835 . . 3 (GId‘ + ) ∈ 𝐻
52 ovres 7438 . . . . 5 (((GId‘ + ) ∈ 𝐻𝑥𝐻) → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
5351, 52mpan 687 . . . 4 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
54 eqid 2738 . . . . . 6 (GId‘ + ) = (GId‘ + )
556, 54grpolid 28878 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → ((GId‘ + ) + 𝑥) = 𝑥)
563, 40, 55sylancr 587 . . . 4 (𝑥𝐻 → ((GId‘ + ) + 𝑥) = 𝑥)
5753, 56eqtrd 2778 . . 3 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = 𝑥)
5812hhnv 29527 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
5912hhsm 29531 . . . . . . . 8 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
60 eqid 2738 . . . . . . . 8 ( ·(2nd ↾ ({-1} × V))) = ( ·(2nd ↾ ({-1} × V)))
6113, 59, 60nvinvfval 29002 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( ·(2nd ↾ ({-1} × V))) = (inv‘ + ))
6258, 61ax-mp 5 . . . . . 6 ( ·(2nd ↾ ({-1} × V))) = (inv‘ + )
6362eqcomi 2747 . . . . 5 (inv‘ + ) = ( ·(2nd ↾ ({-1} × V)))
6463fveq1i 6775 . . . 4 ((inv‘ + )‘𝑥) = (( ·(2nd ↾ ({-1} × V)))‘𝑥)
65 ax-hfvmul 29367 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
66 ffn 6600 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
6765, 66ax-mp 5 . . . . . 6 · Fn (ℂ × ℋ)
68 neg1cn 12087 . . . . . 6 -1 ∈ ℂ
6960curry1val 7945 . . . . . 6 (( · Fn (ℂ × ℋ) ∧ -1 ∈ ℂ) → (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥))
7067, 68, 69mp2an 689 . . . . 5 (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥)
71 shmulcl 29580 . . . . . 6 ((𝐻S ∧ -1 ∈ ℂ ∧ 𝑥𝐻) → (-1 · 𝑥) ∈ 𝐻)
724, 68, 71mp3an12 1450 . . . . 5 (𝑥𝐻 → (-1 · 𝑥) ∈ 𝐻)
7370, 72eqeltrid 2843 . . . 4 (𝑥𝐻 → (( ·(2nd ↾ ({-1} × V)))‘𝑥) ∈ 𝐻)
7464, 73eqeltrid 2843 . . 3 (𝑥𝐻 → ((inv‘ + )‘𝑥) ∈ 𝐻)
75 ovres 7438 . . . . 5 ((((inv‘ + )‘𝑥) ∈ 𝐻𝑥𝐻) → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
7674, 75mpancom 685 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
77 eqid 2738 . . . . . 6 (inv‘ + ) = (inv‘ + )
786, 54, 77grpolinv 28888 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
793, 40, 78sylancr 587 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
8076, 79eqtrd 2778 . . 3 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (GId‘ + ))
815, 28, 47, 51, 57, 74, 80isgrpoi 28860 . 2 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
82 resss 5916 . 2 ( + ↾ (𝐻 × 𝐻)) ⊆ +
833, 81, 823pm3.2i 1338 1 ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  {csn 4561  cop 4567   × cxp 5587  ccnv 5588  ran crn 5590  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  2nd c2nd 7830  cc 10869  1c1 10872  -cneg 11206  GrpOpcgr 28851  GIdcgi 28852  invcgn 28853  AbelOpcablo 28906  NrmCVeccnv 28946  chba 29281   + cva 29282   · csm 29283  normcno 29285  0c0v 29286   S csh 29290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-sh 29569
This theorem is referenced by:  hhssabloi  29624
  Copyright terms: Public domain W3C validator