Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjf Structured version   Visualization version   GIF version

Theorem iundisjf 32569
Description: Rewrite a countable union as a disjoint union. Cf. iundisj 25476. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iundisjf.1 𝑘𝐴
iundisjf.2 𝑛𝐵
iundisjf.3 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisjf 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisjf
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4027 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ
2 nnuz 12775 . . . . . . . . . 10 ℕ = (ℤ‘1)
31, 2sseqtri 3978 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1)
4 rabn0 4336 . . . . . . . . . 10 ({𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
54biimpri 228 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅)
6 infssuzcl 12830 . . . . . . . . 9 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
73, 5, 6sylancr 587 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
8 nfrab1 3415 . . . . . . . . . 10 𝑛{𝑛 ∈ ℕ ∣ 𝑥𝐴}
9 nfcv 2894 . . . . . . . . . 10 𝑛
10 nfcv 2894 . . . . . . . . . 10 𝑛 <
118, 9, 10nfinf 9367 . . . . . . . . 9 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
12 nfcv 2894 . . . . . . . . 9 𝑛
1311nfcsb1 3868 . . . . . . . . . 10 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1413nfcri 2886 . . . . . . . . 9 𝑛 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
15 csbeq1a 3859 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1615eleq2d 2817 . . . . . . . . 9 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1711, 12, 14, 16elrabf 3639 . . . . . . . 8 (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
187, 17sylib 218 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1918simpld 494 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ)
2018simprd 495 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
2119nnred 12140 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2221ltnrd 11247 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
23 eliun 4943 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
24 nfcv 2894 . . . . . . . . . . 11 𝑘
25 iundisjf.1 . . . . . . . . . . . 12 𝑘𝐴
2625nfcri 2886 . . . . . . . . . . 11 𝑘 𝑥𝐴
2724, 26nfrexw 3280 . . . . . . . . . 10 𝑘𝑛 ∈ ℕ 𝑥𝐴
2826, 24nfrabw 3432 . . . . . . . . . . . 12 𝑘{𝑛 ∈ ℕ ∣ 𝑥𝐴}
29 nfcv 2894 . . . . . . . . . . . 12 𝑘
30 nfcv 2894 . . . . . . . . . . . 12 𝑘 <
3128, 29, 30nfinf 9367 . . . . . . . . . . 11 𝑘inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
3231, 30, 31nfbr 5136 . . . . . . . . . 10 𝑘inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
3321ad2antrr 726 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
34 elfzouz 13563 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ (ℤ‘1))
3534, 2eleqtrrdi 2842 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ ℕ)
3635ad2antlr 727 . . . . . . . . . . . . 13 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
3736nnred 12140 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
38 simpr 484 . . . . . . . . . . . . . 14 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
39 nfcv 2894 . . . . . . . . . . . . . . 15 𝑛𝑘
40 iundisjf.2 . . . . . . . . . . . . . . . 16 𝑛𝐵
4140nfcri 2886 . . . . . . . . . . . . . . 15 𝑛 𝑥𝐵
42 iundisjf.3 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘𝐴 = 𝐵)
4342eleq2d 2817 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
4439, 12, 41, 43elrabf 3639 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ↔ (𝑘 ∈ ℕ ∧ 𝑥𝐵))
4536, 38, 44sylanbrc 583 . . . . . . . . . . . . 13 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
46 infssuzle 12829 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴}) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
473, 45, 46sylancr 587 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
48 elfzolt2 13568 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
4948ad2antlr 727 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
5033, 37, 33, 47, 49lelttrd 11271 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
5150exp31 419 . . . . . . . . . 10 (∃𝑛 ∈ ℕ 𝑥𝐴 → (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → (𝑥𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))))
5227, 32, 51rexlimd 3239 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
5323, 52biimtrid 242 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
5422, 53mtod 198 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5520, 54eldifd 3908 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
56 csbeq1 3848 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
5731nfeq2 2912 . . . . . . . . . 10 𝑘 𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
58 nfcv 2894 . . . . . . . . . 10 𝑘(1..^𝑚)
59 nfcv 2894 . . . . . . . . . . 11 𝑘1
60 nfcv 2894 . . . . . . . . . . 11 𝑘..^
6159, 60, 31nfov 7376 . . . . . . . . . 10 𝑘(1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
62 oveq2 7354 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
63 eqidd 2732 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝐵 = 𝐵)
6457, 58, 61, 62, 63iuneq12df 4966 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
6556, 64difeq12d 4074 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
6665eleq2d 2817 . . . . . . 7 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
6766rspcev 3572 . . . . . 6 ((inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6819, 55, 67syl2anc 584 . . . . 5 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
69 nfv 1915 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
70 nfcsb1v 3869 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
71 nfcv 2894 . . . . . . . . 9 𝑛(1..^𝑚)
7271, 40nfiun 4971 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
7370, 72nfdif 4076 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
7473nfcri 2886 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
75 csbeq1a 3859 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
76 oveq2 7354 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7776iuneq1d 4967 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
7875, 77difeq12d 4074 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7978eleq2d 2817 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
8069, 74, 79cbvrexw 3275 . . . . 5 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
8168, 80sylibr 234 . . . 4 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
82 eldifi 4078 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
8382reximi 3070 . . . 4 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ ℕ 𝑥𝐴)
8481, 83impbii 209 . . 3 (∃𝑛 ∈ ℕ 𝑥𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
85 eliun 4943 . . 3 (𝑥 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
86 eliun 4943 . . 3 (𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8784, 85, 863bitr4i 303 . 2 (𝑥 𝑛 ∈ ℕ 𝐴𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8887eqriv 2728 1 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wne 2928  wrex 3056  {crab 3395  csb 3845  cdif 3894  wss 3897  c0 4280   ciun 4939   class class class wbr 5089  cfv 6481  (class class class)co 7346  infcinf 9325  cr 11005  1c1 11007   < clt 11146  cle 11147  cn 12125  cuz 12732  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  iundisjcnt  32780
  Copyright terms: Public domain W3C validator