Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjf Structured version   Visualization version   GIF version

Theorem iundisjf 32602
Description: Rewrite a countable union as a disjoint union. Cf. iundisj 25583. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iundisjf.1 𝑘𝐴
iundisjf.2 𝑛𝐵
iundisjf.3 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisjf 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisjf
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4080 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ
2 nnuz 12921 . . . . . . . . . 10 ℕ = (ℤ‘1)
31, 2sseqtri 4032 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1)
4 rabn0 4389 . . . . . . . . . 10 ({𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
54biimpri 228 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅)
6 infssuzcl 12974 . . . . . . . . 9 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
73, 5, 6sylancr 587 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
8 nfrab1 3457 . . . . . . . . . 10 𝑛{𝑛 ∈ ℕ ∣ 𝑥𝐴}
9 nfcv 2905 . . . . . . . . . 10 𝑛
10 nfcv 2905 . . . . . . . . . 10 𝑛 <
118, 9, 10nfinf 9522 . . . . . . . . 9 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
12 nfcv 2905 . . . . . . . . 9 𝑛
1311nfcsb1 3922 . . . . . . . . . 10 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1413nfcri 2897 . . . . . . . . 9 𝑛 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
15 csbeq1a 3913 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1615eleq2d 2827 . . . . . . . . 9 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1711, 12, 14, 16elrabf 3688 . . . . . . . 8 (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
187, 17sylib 218 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1918simpld 494 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ)
2018simprd 495 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
2119nnred 12281 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2221ltnrd 11395 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
23 eliun 4995 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
24 nfcv 2905 . . . . . . . . . . 11 𝑘
25 iundisjf.1 . . . . . . . . . . . 12 𝑘𝐴
2625nfcri 2897 . . . . . . . . . . 11 𝑘 𝑥𝐴
2724, 26nfrexw 3313 . . . . . . . . . 10 𝑘𝑛 ∈ ℕ 𝑥𝐴
2826, 24nfrabw 3475 . . . . . . . . . . . 12 𝑘{𝑛 ∈ ℕ ∣ 𝑥𝐴}
29 nfcv 2905 . . . . . . . . . . . 12 𝑘
30 nfcv 2905 . . . . . . . . . . . 12 𝑘 <
3128, 29, 30nfinf 9522 . . . . . . . . . . 11 𝑘inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
3231, 30, 31nfbr 5190 . . . . . . . . . 10 𝑘inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
3321ad2antrr 726 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
34 elfzouz 13703 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ (ℤ‘1))
3534, 2eleqtrrdi 2852 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ ℕ)
3635ad2antlr 727 . . . . . . . . . . . . 13 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
3736nnred 12281 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
38 simpr 484 . . . . . . . . . . . . . 14 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
39 nfcv 2905 . . . . . . . . . . . . . . 15 𝑛𝑘
40 iundisjf.2 . . . . . . . . . . . . . . . 16 𝑛𝐵
4140nfcri 2897 . . . . . . . . . . . . . . 15 𝑛 𝑥𝐵
42 iundisjf.3 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘𝐴 = 𝐵)
4342eleq2d 2827 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
4439, 12, 41, 43elrabf 3688 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ↔ (𝑘 ∈ ℕ ∧ 𝑥𝐵))
4536, 38, 44sylanbrc 583 . . . . . . . . . . . . 13 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
46 infssuzle 12973 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴}) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
473, 45, 46sylancr 587 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
48 elfzolt2 13708 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
4948ad2antlr 727 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
5033, 37, 33, 47, 49lelttrd 11419 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
5150exp31 419 . . . . . . . . . 10 (∃𝑛 ∈ ℕ 𝑥𝐴 → (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → (𝑥𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))))
5227, 32, 51rexlimd 3266 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
5323, 52biimtrid 242 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
5422, 53mtod 198 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5520, 54eldifd 3962 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
56 csbeq1 3902 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
5731nfeq2 2923 . . . . . . . . . 10 𝑘 𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
58 nfcv 2905 . . . . . . . . . 10 𝑘(1..^𝑚)
59 nfcv 2905 . . . . . . . . . . 11 𝑘1
60 nfcv 2905 . . . . . . . . . . 11 𝑘..^
6159, 60, 31nfov 7461 . . . . . . . . . 10 𝑘(1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
62 oveq2 7439 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
63 eqidd 2738 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝐵 = 𝐵)
6457, 58, 61, 62, 63iuneq12df 5018 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
6556, 64difeq12d 4127 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
6665eleq2d 2827 . . . . . . 7 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
6766rspcev 3622 . . . . . 6 ((inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6819, 55, 67syl2anc 584 . . . . 5 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
69 nfv 1914 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
70 nfcsb1v 3923 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
71 nfcv 2905 . . . . . . . . 9 𝑛(1..^𝑚)
7271, 40nfiun 5023 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
7370, 72nfdif 4129 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
7473nfcri 2897 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
75 csbeq1a 3913 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
76 oveq2 7439 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7776iuneq1d 5019 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
7875, 77difeq12d 4127 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7978eleq2d 2827 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
8069, 74, 79cbvrexw 3307 . . . . 5 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
8168, 80sylibr 234 . . . 4 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
82 eldifi 4131 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
8382reximi 3084 . . . 4 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ ℕ 𝑥𝐴)
8481, 83impbii 209 . . 3 (∃𝑛 ∈ ℕ 𝑥𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
85 eliun 4995 . . 3 (𝑥 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
86 eliun 4995 . . 3 (𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8784, 85, 863bitr4i 303 . 2 (𝑥 𝑛 ∈ ℕ 𝐴𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8887eqriv 2734 1 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wnfc 2890  wne 2940  wrex 3070  {crab 3436  csb 3899  cdif 3948  wss 3951  c0 4333   ciun 4991   class class class wbr 5143  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154  1c1 11156   < clt 11295  cle 11296  cn 12266  cuz 12878  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by:  iundisjcnt  32800
  Copyright terms: Public domain W3C validator