MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem2 Structured version   Visualization version   GIF version

Theorem lgsquad2lem2 25969
Description: Lemma for lgsquad2 25970. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
lgsquad2lem2.f ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
lgsquad2lem2.s (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
Assertion
Ref Expression
lgsquad2lem2 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Distinct variable groups:   𝑚,𝑀   𝑥,𝑚,𝑁   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑥,𝑘,𝑚)   𝑀(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgsquad2lem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 2nn 11698 . . . . 5 2 ∈ ℕ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
4 lgsquad2.3 . . . 4 (𝜑𝑁 ∈ ℕ)
51nnzd 12074 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 2z 12002 . . . . . 6 2 ∈ ℤ
7 gcdcom 15852 . . . . . 6 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑀 gcd 2) = (2 gcd 𝑀))
85, 6, 7sylancl 589 . . . . 5 (𝜑 → (𝑀 gcd 2) = (2 gcd 𝑀))
9 lgsquad2.2 . . . . . 6 (𝜑 → ¬ 2 ∥ 𝑀)
10 2prm 16026 . . . . . . 7 2 ∈ ℙ
11 coprm 16045 . . . . . . 7 ((2 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (¬ 2 ∥ 𝑀 ↔ (2 gcd 𝑀) = 1))
1210, 5, 11sylancr 590 . . . . . 6 (𝜑 → (¬ 2 ∥ 𝑀 ↔ (2 gcd 𝑀) = 1))
139, 12mpbid 235 . . . . 5 (𝜑 → (2 gcd 𝑀) = 1)
148, 13eqtrd 2833 . . . 4 (𝜑 → (𝑀 gcd 2) = 1)
15 rpmulgcd 15896 . . . 4 (((𝑀 ∈ ℕ ∧ 2 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 2) = 1) → (𝑀 gcd (2 · 𝑁)) = (𝑀 gcd 𝑁))
161, 3, 4, 14, 15syl31anc 1370 . . 3 (𝜑 → (𝑀 gcd (2 · 𝑁)) = (𝑀 gcd 𝑁))
17 lgsquad2.5 . . 3 (𝜑 → (𝑀 gcd 𝑁) = 1)
1816, 17eqtrd 2833 . 2 (𝜑 → (𝑀 gcd (2 · 𝑁)) = 1)
19 oveq1 7142 . . . . . . . 8 (𝑚 = 1 → (𝑚 /L 𝑁) = (1 /L 𝑁))
20 oveq2 7143 . . . . . . . 8 (𝑚 = 1 → (𝑁 /L 𝑚) = (𝑁 /L 1))
2119, 20oveq12d 7153 . . . . . . 7 (𝑚 = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((1 /L 𝑁) · (𝑁 /L 1)))
22 oveq1 7142 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
23 1m1e0 11697 . . . . . . . . . . . 12 (1 − 1) = 0
2422, 23eqtrdi 2849 . . . . . . . . . . 11 (𝑚 = 1 → (𝑚 − 1) = 0)
2524oveq1d 7150 . . . . . . . . . 10 (𝑚 = 1 → ((𝑚 − 1) / 2) = (0 / 2))
26 2cn 11700 . . . . . . . . . . 11 2 ∈ ℂ
27 2ne0 11729 . . . . . . . . . . 11 2 ≠ 0
2826, 27div0i 11363 . . . . . . . . . 10 (0 / 2) = 0
2925, 28eqtrdi 2849 . . . . . . . . 9 (𝑚 = 1 → ((𝑚 − 1) / 2) = 0)
3029oveq1d 7150 . . . . . . . 8 (𝑚 = 1 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (0 · ((𝑁 − 1) / 2)))
3130oveq2d 7151 . . . . . . 7 (𝑚 = 1 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(0 · ((𝑁 − 1) / 2))))
3221, 31eqeq12d 2814 . . . . . 6 (𝑚 = 1 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2)))))
3332imbi2d 344 . . . . 5 (𝑚 = 1 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑚 gcd (2 · 𝑁)) = 1 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2))))))
3433imbi2d 344 . . . 4 (𝑚 = 1 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2)))))))
35 oveq1 7142 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 gcd (2 · 𝑁)) = (𝑥 gcd (2 · 𝑁)))
3635eqeq1d 2800 . . . . . 6 (𝑚 = 𝑥 → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ (𝑥 gcd (2 · 𝑁)) = 1))
37 oveq1 7142 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 /L 𝑁) = (𝑥 /L 𝑁))
38 oveq2 7143 . . . . . . . 8 (𝑚 = 𝑥 → (𝑁 /L 𝑚) = (𝑁 /L 𝑥))
3937, 38oveq12d 7153 . . . . . . 7 (𝑚 = 𝑥 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)))
40 oveq1 7142 . . . . . . . . . 10 (𝑚 = 𝑥 → (𝑚 − 1) = (𝑥 − 1))
4140oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑥 → ((𝑚 − 1) / 2) = ((𝑥 − 1) / 2))
4241oveq1d 7150 . . . . . . . 8 (𝑚 = 𝑥 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))
4342oveq2d 7151 . . . . . . 7 (𝑚 = 𝑥 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))
4439, 43eqeq12d 2814 . . . . . 6 (𝑚 = 𝑥 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
4536, 44imbi12d 348 . . . . 5 (𝑚 = 𝑥 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))))
4645imbi2d 344 . . . 4 (𝑚 = 𝑥 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))))
47 oveq1 7142 . . . . . . 7 (𝑚 = 𝑦 → (𝑚 gcd (2 · 𝑁)) = (𝑦 gcd (2 · 𝑁)))
4847eqeq1d 2800 . . . . . 6 (𝑚 = 𝑦 → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ (𝑦 gcd (2 · 𝑁)) = 1))
49 oveq1 7142 . . . . . . . 8 (𝑚 = 𝑦 → (𝑚 /L 𝑁) = (𝑦 /L 𝑁))
50 oveq2 7143 . . . . . . . 8 (𝑚 = 𝑦 → (𝑁 /L 𝑚) = (𝑁 /L 𝑦))
5149, 50oveq12d 7153 . . . . . . 7 (𝑚 = 𝑦 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)))
52 oveq1 7142 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑚 − 1) = (𝑦 − 1))
5352oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑦 → ((𝑚 − 1) / 2) = ((𝑦 − 1) / 2))
5453oveq1d 7150 . . . . . . . 8 (𝑚 = 𝑦 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))
5554oveq2d 7151 . . . . . . 7 (𝑚 = 𝑦 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))
5651, 55eqeq12d 2814 . . . . . 6 (𝑚 = 𝑦 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))
5748, 56imbi12d 348 . . . . 5 (𝑚 = 𝑦 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))
5857imbi2d 344 . . . 4 (𝑚 = 𝑦 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))))
59 oveq1 7142 . . . . . . 7 (𝑚 = (𝑥 · 𝑦) → (𝑚 gcd (2 · 𝑁)) = ((𝑥 · 𝑦) gcd (2 · 𝑁)))
6059eqeq1d 2800 . . . . . 6 (𝑚 = (𝑥 · 𝑦) → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1))
61 oveq1 7142 . . . . . . . 8 (𝑚 = (𝑥 · 𝑦) → (𝑚 /L 𝑁) = ((𝑥 · 𝑦) /L 𝑁))
62 oveq2 7143 . . . . . . . 8 (𝑚 = (𝑥 · 𝑦) → (𝑁 /L 𝑚) = (𝑁 /L (𝑥 · 𝑦)))
6361, 62oveq12d 7153 . . . . . . 7 (𝑚 = (𝑥 · 𝑦) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))))
64 oveq1 7142 . . . . . . . . . 10 (𝑚 = (𝑥 · 𝑦) → (𝑚 − 1) = ((𝑥 · 𝑦) − 1))
6564oveq1d 7150 . . . . . . . . 9 (𝑚 = (𝑥 · 𝑦) → ((𝑚 − 1) / 2) = (((𝑥 · 𝑦) − 1) / 2))
6665oveq1d 7150 . . . . . . . 8 (𝑚 = (𝑥 · 𝑦) → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = ((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))
6766oveq2d 7151 . . . . . . 7 (𝑚 = (𝑥 · 𝑦) → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))
6863, 67eqeq12d 2814 . . . . . 6 (𝑚 = (𝑥 · 𝑦) → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))
6960, 68imbi12d 348 . . . . 5 (𝑚 = (𝑥 · 𝑦) → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))))
7069imbi2d 344 . . . 4 (𝑚 = (𝑥 · 𝑦) → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
71 oveq1 7142 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 gcd (2 · 𝑁)) = (𝑀 gcd (2 · 𝑁)))
7271eqeq1d 2800 . . . . . 6 (𝑚 = 𝑀 → ((𝑚 gcd (2 · 𝑁)) = 1 ↔ (𝑀 gcd (2 · 𝑁)) = 1))
73 oveq1 7142 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚 /L 𝑁) = (𝑀 /L 𝑁))
74 oveq2 7143 . . . . . . . 8 (𝑚 = 𝑀 → (𝑁 /L 𝑚) = (𝑁 /L 𝑀))
7573, 74oveq12d 7153 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)))
76 oveq1 7142 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚 − 1) = (𝑀 − 1))
7776oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑚 − 1) / 2) = ((𝑀 − 1) / 2))
7877oveq1d 7150 . . . . . . . 8 (𝑚 = 𝑀 → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))
7978oveq2d 7151 . . . . . . 7 (𝑚 = 𝑀 → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
8075, 79eqeq12d 2814 . . . . . 6 (𝑚 = 𝑀 → (((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) ↔ ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))))
8172, 80imbi12d 348 . . . . 5 (𝑚 = 𝑀 → (((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))))
8281imbi2d 344 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))) ↔ (𝜑 → ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))))))
83 1t1e1 11787 . . . . . . 7 (1 · 1) = 1
84 neg1cn 11739 . . . . . . . 8 -1 ∈ ℂ
85 exp0 13429 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
8684, 85ax-mp 5 . . . . . . 7 (-1↑0) = 1
8783, 86eqtr4i 2824 . . . . . 6 (1 · 1) = (-1↑0)
88 sq1 13554 . . . . . . . . 9 (1↑2) = 1
8988oveq1i 7145 . . . . . . . 8 ((1↑2) /L 𝑁) = (1 /L 𝑁)
90 1z 12000 . . . . . . . . . 10 1 ∈ ℤ
91 ax-1ne0 10595 . . . . . . . . . 10 1 ≠ 0
9290, 91pm3.2i 474 . . . . . . . . 9 (1 ∈ ℤ ∧ 1 ≠ 0)
934nnzd 12074 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
94 1gcd 15871 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1 gcd 𝑁) = 1)
9593, 94syl 17 . . . . . . . . 9 (𝜑 → (1 gcd 𝑁) = 1)
96 lgssq 25921 . . . . . . . . 9 (((1 ∈ ℤ ∧ 1 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (1 gcd 𝑁) = 1) → ((1↑2) /L 𝑁) = 1)
9792, 93, 95, 96mp3an2i 1463 . . . . . . . 8 (𝜑 → ((1↑2) /L 𝑁) = 1)
9889, 97syl5eqr 2847 . . . . . . 7 (𝜑 → (1 /L 𝑁) = 1)
9988oveq2i 7146 . . . . . . . 8 (𝑁 /L (1↑2)) = (𝑁 /L 1)
100 1nn 11636 . . . . . . . . . 10 1 ∈ ℕ
101100a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
102 gcd1 15866 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
10393, 102syl 17 . . . . . . . . 9 (𝜑 → (𝑁 gcd 1) = 1)
104 lgssq2 25922 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ∈ ℕ ∧ (𝑁 gcd 1) = 1) → (𝑁 /L (1↑2)) = 1)
10593, 101, 103, 104syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑁 /L (1↑2)) = 1)
10699, 105syl5eqr 2847 . . . . . . 7 (𝜑 → (𝑁 /L 1) = 1)
10798, 106oveq12d 7153 . . . . . 6 (𝜑 → ((1 /L 𝑁) · (𝑁 /L 1)) = (1 · 1))
108 nnm1nn0 11926 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1094, 108syl 17 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℕ0)
110109nn0cnd 11945 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℂ)
111110halfcld 11870 . . . . . . . 8 (𝜑 → ((𝑁 − 1) / 2) ∈ ℂ)
112111mul02d 10827 . . . . . . 7 (𝜑 → (0 · ((𝑁 − 1) / 2)) = 0)
113112oveq2d 7151 . . . . . 6 (𝜑 → (-1↑(0 · ((𝑁 − 1) / 2))) = (-1↑0))
11487, 107, 1133eqtr4a 2859 . . . . 5 (𝜑 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2))))
115114a1d 25 . . . 4 (𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((1 /L 𝑁) · (𝑁 /L 1)) = (-1↑(0 · ((𝑁 − 1) / 2)))))
116 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ ℙ)
117 prmz 16009 . . . . . . . . . . . 12 (𝑚 ∈ ℙ → 𝑚 ∈ ℤ)
118117ad2antrl 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ ℤ)
1196a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 2 ∈ ℤ)
1204adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑁 ∈ ℕ)
121120nnzd 12074 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑁 ∈ ℤ)
122 zmulcl 12019 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
1236, 121, 122sylancr 590 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (2 · 𝑁) ∈ ℤ)
124 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd (2 · 𝑁)) = 1)
125 dvdsmul1 15623 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁))
1266, 121, 125sylancr 590 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 2 ∥ (2 · 𝑁))
127 rpdvds 15994 . . . . . . . . . . 11 (((𝑚 ∈ ℤ ∧ 2 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) ∧ ((𝑚 gcd (2 · 𝑁)) = 1 ∧ 2 ∥ (2 · 𝑁))) → (𝑚 gcd 2) = 1)
128118, 119, 123, 124, 126, 127syl32anc 1375 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd 2) = 1)
129 prmrp 16046 . . . . . . . . . . 11 ((𝑚 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑚 gcd 2) = 1 ↔ 𝑚 ≠ 2))
130116, 10, 129sylancl 589 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → ((𝑚 gcd 2) = 1 ↔ 𝑚 ≠ 2))
131128, 130mpbid 235 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ≠ 2)
132 eldifsn 4680 . . . . . . . . 9 (𝑚 ∈ (ℙ ∖ {2}) ↔ (𝑚 ∈ ℙ ∧ 𝑚 ≠ 2))
133116, 131, 132sylanbrc 586 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
134 prmnn 16008 . . . . . . . . . . 11 (𝑚 ∈ ℙ → 𝑚 ∈ ℕ)
135134ad2antrl 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 𝑚 ∈ ℕ)
1362a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → 2 ∈ ℕ)
137 rpmulgcd 15896 . . . . . . . . . 10 (((𝑚 ∈ ℕ ∧ 2 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑚 gcd 2) = 1) → (𝑚 gcd (2 · 𝑁)) = (𝑚 gcd 𝑁))
138135, 136, 120, 128, 137syl31anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd (2 · 𝑁)) = (𝑚 gcd 𝑁))
139138, 124eqtr3d 2835 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 gcd 𝑁) = 1)
140133, 139jca 515 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1))
141 lgsquad2lem2.f . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
142140, 141syldan 594 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℙ ∧ (𝑚 gcd (2 · 𝑁)) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
143142exp32 424 . . . . 5 (𝜑 → (𝑚 ∈ ℙ → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))))
144143com12 32 . . . 4 (𝑚 ∈ ℙ → (𝜑 → ((𝑚 gcd (2 · 𝑁)) = 1 → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))))
145 jcab 521 . . . . 5 ((𝜑 → (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))) ↔ ((𝜑 → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ∧ (𝜑 → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))))
146 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑥 ∈ (ℤ‘2))
147 eluz2nn 12272 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℕ)
148146, 147syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑥 ∈ ℕ)
149 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑦 ∈ (ℤ‘2))
150 eluz2nn 12272 . . . . . . . . . . . 12 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℕ)
151149, 150syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑦 ∈ ℕ)
152148, 151nnmulcld 11678 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑥 · 𝑦) ∈ ℕ)
153 n2dvds1 15709 . . . . . . . . . . . 12 ¬ 2 ∥ 1
15493ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑁 ∈ ℤ)
1556, 154, 125sylancr 590 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 2 ∥ (2 · 𝑁))
156 eluzelz 12241 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℤ)
157 eluzelz 12241 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
158156, 157anim12i 615 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ))
159158ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ))
160 zmulcl 12019 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
161159, 160syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 · 𝑦) ∈ ℤ)
1626, 154, 122sylancr 590 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 · 𝑁) ∈ ℤ)
163 dvdsgcd 15882 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 ∥ (𝑥 · 𝑦) ∧ 2 ∥ (2 · 𝑁)) → 2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁))))
1646, 161, 162, 163mp3an2i 1463 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 ∥ (𝑥 · 𝑦) ∧ 2 ∥ (2 · 𝑁)) → 2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁))))
165155, 164mpan2d 693 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 ∥ (𝑥 · 𝑦) → 2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁))))
166 simpr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1)
167166breq2d 5042 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 ∥ ((𝑥 · 𝑦) gcd (2 · 𝑁)) ↔ 2 ∥ 1))
168165, 167sylibd 242 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (2 ∥ (𝑥 · 𝑦) → 2 ∥ 1))
169153, 168mtoi 202 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ¬ 2 ∥ (𝑥 · 𝑦))
170169adantrr 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ¬ 2 ∥ (𝑥 · 𝑦))
1714ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → 𝑁 ∈ ℕ)
172 lgsquad2.4 . . . . . . . . . . 11 (𝜑 → ¬ 2 ∥ 𝑁)
173172ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ¬ 2 ∥ 𝑁)
174 dvdsmul2 15624 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (2 · 𝑁))
1756, 154, 174sylancr 590 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑁 ∥ (2 · 𝑁))
176 rpdvds 15994 . . . . . . . . . . . 12 ((((𝑥 · 𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ 𝑁 ∥ (2 · 𝑁))) → ((𝑥 · 𝑦) gcd 𝑁) = 1)
177161, 154, 162, 166, 175, 176syl32anc 1375 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((𝑥 · 𝑦) gcd 𝑁) = 1)
178177adantrr 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑥 · 𝑦) gcd 𝑁) = 1)
179 eqidd 2799 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑥 · 𝑦) = (𝑥 · 𝑦))
180159simpld 498 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑥 ∈ ℤ)
181 gcdcom 15852 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝑥 gcd (2 · 𝑁)) = ((2 · 𝑁) gcd 𝑥))
182180, 162, 181syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 gcd (2 · 𝑁)) = ((2 · 𝑁) gcd 𝑥))
183 gcdcom 15852 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ) → ((2 · 𝑁) gcd (𝑥 · 𝑦)) = ((𝑥 · 𝑦) gcd (2 · 𝑁)))
184162, 161, 183syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd (𝑥 · 𝑦)) = ((𝑥 · 𝑦) gcd (2 · 𝑁)))
185184, 166eqtrd 2833 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd (𝑥 · 𝑦)) = 1)
186 dvdsmul1 15623 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
187159, 186syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑥 ∥ (𝑥 · 𝑦))
188 rpdvds 15994 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ) ∧ (((2 · 𝑁) gcd (𝑥 · 𝑦)) = 1 ∧ 𝑥 ∥ (𝑥 · 𝑦))) → ((2 · 𝑁) gcd 𝑥) = 1)
189162, 180, 161, 185, 187, 188syl32anc 1375 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd 𝑥) = 1)
190182, 189eqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑥 gcd (2 · 𝑁)) = 1)
191190adantrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑥 gcd (2 · 𝑁)) = 1)
192 simprrl 780 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
193191, 192mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))
194159simprd 499 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑦 ∈ ℤ)
195 gcdcom 15852 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝑦 gcd (2 · 𝑁)) = ((2 · 𝑁) gcd 𝑦))
196194, 162, 195syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑦 gcd (2 · 𝑁)) = ((2 · 𝑁) gcd 𝑦))
197 dvdsmul2 15624 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∥ (𝑥 · 𝑦))
198159, 197syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → 𝑦 ∥ (𝑥 · 𝑦))
199 rpdvds 15994 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑥 · 𝑦) ∈ ℤ) ∧ (((2 · 𝑁) gcd (𝑥 · 𝑦)) = 1 ∧ 𝑦 ∥ (𝑥 · 𝑦))) → ((2 · 𝑁) gcd 𝑦) = 1)
200162, 194, 161, 185, 198, 199syl32anc 1375 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → ((2 · 𝑁) gcd 𝑦) = 1)
201196, 200eqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ ((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1) → (𝑦 gcd (2 · 𝑁)) = 1)
202201adantrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (𝑦 gcd (2 · 𝑁)) = 1)
203 simprrr 781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))
204202, 203mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))
205152, 170, 171, 173, 178, 148, 151, 179, 193, 204lgsquad2lem1 25968 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) ∧ (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 ∧ (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))))) → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))
206205exp32 424 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → ((((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))) → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))))
207206com23 86 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2))) → ((((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))) → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2))))))
208207expcom 417 . . . . . 6 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (𝜑 → ((((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2))))) → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
209208a2d 29 . . . . 5 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → ((𝜑 → (((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ∧ ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))) → (𝜑 → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
210145, 209syl5bir 246 . . . 4 ((𝑥 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (((𝜑 → ((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ∧ (𝜑 → ((𝑦 gcd (2 · 𝑁)) = 1 → ((𝑦 /L 𝑁) · (𝑁 /L 𝑦)) = (-1↑(((𝑦 − 1) / 2) · ((𝑁 − 1) / 2)))))) → (𝜑 → (((𝑥 · 𝑦) gcd (2 · 𝑁)) = 1 → (((𝑥 · 𝑦) /L 𝑁) · (𝑁 /L (𝑥 · 𝑦))) = (-1↑((((𝑥 · 𝑦) − 1) / 2) · ((𝑁 − 1) / 2)))))))
21134, 46, 58, 70, 82, 115, 144, 210prmind 16020 . . 3 (𝑀 ∈ ℕ → (𝜑 → ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))))
2121, 211mpcom 38 . 2 (𝜑 → ((𝑀 gcd (2 · 𝑁)) = 1 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))))
21318, 212mpd 15 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  cexp 13425  cdvds 15599   gcd cgcd 15833  cprime 16005   /L clgs 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-lgs 25879
This theorem is referenced by:  lgsquad2  25970
  Copyright terms: Public domain W3C validator