Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclclN Structured version   Visualization version   GIF version

Theorem pclclN 39852
Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclclN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclclN
Dummy variables 𝑦 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . 3 𝐴 = (Atoms‘𝐾)
2 pclfval.s . . 3 𝑆 = (PSubSp‘𝐾)
3 pclfval.c . . 3 𝑈 = (PCl‘𝐾)
41, 2, 3pclvalN 39851 . 2 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
51, 2atpsubN 39714 . . . 4 (𝐾𝑉𝐴𝑆)
6 sseq2 3990 . . . . 5 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
76intminss 4954 . . . 4 ((𝐴𝑆𝑋𝐴) → {𝑦𝑆𝑋𝑦} ⊆ 𝐴)
85, 7sylan 580 . . 3 ((𝐾𝑉𝑋𝐴) → {𝑦𝑆𝑋𝑦} ⊆ 𝐴)
9 r19.26 3098 . . . . . . . 8 (∀𝑦𝑆 ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)) ↔ (∀𝑦𝑆 (𝑋𝑦𝑝𝑦) ∧ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦)))
10 jcab 517 . . . . . . . . 9 ((𝑋𝑦 → (𝑝𝑦𝑞𝑦)) ↔ ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)))
1110ralbii 3081 . . . . . . . 8 (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) ↔ ∀𝑦𝑆 ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)))
12 vex 3467 . . . . . . . . . 10 𝑝 ∈ V
1312elintrab 4940 . . . . . . . . 9 (𝑝 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑝𝑦))
14 vex 3467 . . . . . . . . . 10 𝑞 ∈ V
1514elintrab 4940 . . . . . . . . 9 (𝑞 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦))
1613, 15anbi12i 628 . . . . . . . 8 ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) ↔ (∀𝑦𝑆 (𝑋𝑦𝑝𝑦) ∧ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦)))
179, 11, 163bitr4ri 304 . . . . . . 7 ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) ↔ ∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)))
18 simpll1 1212 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝐾𝑉)
19 simplr 768 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑦𝑆)
20 simpll3 1214 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟𝐴)
21 simprl 770 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑝𝑦)
22 simprr 772 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑞𝑦)
23 simpll2 1213 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))
24 eqid 2734 . . . . . . . . . . . . . . 15 (le‘𝐾) = (le‘𝐾)
25 eqid 2734 . . . . . . . . . . . . . . 15 (join‘𝐾) = (join‘𝐾)
2624, 25, 1, 2psubspi2N 39709 . . . . . . . . . . . . . 14 (((𝐾𝑉𝑦𝑆𝑟𝐴) ∧ (𝑝𝑦𝑞𝑦𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟𝑦)
2718, 19, 20, 21, 22, 23, 26syl33anc 1386 . . . . . . . . . . . . 13 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟𝑦)
2827ex 412 . . . . . . . . . . . 12 (((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) → ((𝑝𝑦𝑞𝑦) → 𝑟𝑦))
2928imim2d 57 . . . . . . . . . . 11 (((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) → ((𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → (𝑋𝑦𝑟𝑦)))
3029ralimdva 3154 . . . . . . . . . 10 ((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → ∀𝑦𝑆 (𝑋𝑦𝑟𝑦)))
31 vex 3467 . . . . . . . . . . 11 𝑟 ∈ V
3231elintrab 4940 . . . . . . . . . 10 (𝑟 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑟𝑦))
3330, 32imbitrrdi 252 . . . . . . . . 9 ((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → 𝑟 {𝑦𝑆𝑋𝑦}))
34333exp 1119 . . . . . . . 8 (𝐾𝑉 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟𝐴 → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3534com24 95 . . . . . . 7 (𝐾𝑉 → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3617, 35biimtrid 242 . . . . . 6 (𝐾𝑉 → ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3736ralrimdv 3139 . . . . 5 (𝐾𝑉 → ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦})))
3837ralrimivv 3187 . . . 4 (𝐾𝑉 → ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))
3938adantr 480 . . 3 ((𝐾𝑉𝑋𝐴) → ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))
4024, 25, 1, 2ispsubsp 39706 . . . 4 (𝐾𝑉 → ( {𝑦𝑆𝑋𝑦} ∈ 𝑆 ↔ ( {𝑦𝑆𝑋𝑦} ⊆ 𝐴 ∧ ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
4140adantr 480 . . 3 ((𝐾𝑉𝑋𝐴) → ( {𝑦𝑆𝑋𝑦} ∈ 𝑆 ↔ ( {𝑦𝑆𝑋𝑦} ⊆ 𝐴 ∧ ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
428, 39, 41mpbir2and 713 . 2 ((𝐾𝑉𝑋𝐴) → {𝑦𝑆𝑋𝑦} ∈ 𝑆)
434, 42eqeltrd 2833 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {crab 3419  wss 3931   cint 4926   class class class wbr 5123  cfv 6541  (class class class)co 7413  lecple 17280  joincjn 18327  Atomscatm 39223  PSubSpcpsubsp 39457  PClcpclN 39848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-psubsp 39464  df-pclN 39849
This theorem is referenced by:  pclunN  39859  pclfinN  39861
  Copyright terms: Public domain W3C validator