Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclclN Structured version   Visualization version   GIF version

Theorem pclclN 37905
Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclclN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclclN
Dummy variables 𝑦 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . 3 𝐴 = (Atoms‘𝐾)
2 pclfval.s . . 3 𝑆 = (PSubSp‘𝐾)
3 pclfval.c . . 3 𝑈 = (PCl‘𝐾)
41, 2, 3pclvalN 37904 . 2 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
51, 2atpsubN 37767 . . . 4 (𝐾𝑉𝐴𝑆)
6 sseq2 3947 . . . . 5 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
76intminss 4905 . . . 4 ((𝐴𝑆𝑋𝐴) → {𝑦𝑆𝑋𝑦} ⊆ 𝐴)
85, 7sylan 580 . . 3 ((𝐾𝑉𝑋𝐴) → {𝑦𝑆𝑋𝑦} ⊆ 𝐴)
9 r19.26 3095 . . . . . . . 8 (∀𝑦𝑆 ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)) ↔ (∀𝑦𝑆 (𝑋𝑦𝑝𝑦) ∧ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦)))
10 jcab 518 . . . . . . . . 9 ((𝑋𝑦 → (𝑝𝑦𝑞𝑦)) ↔ ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)))
1110ralbii 3092 . . . . . . . 8 (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) ↔ ∀𝑦𝑆 ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)))
12 vex 3436 . . . . . . . . . 10 𝑝 ∈ V
1312elintrab 4891 . . . . . . . . 9 (𝑝 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑝𝑦))
14 vex 3436 . . . . . . . . . 10 𝑞 ∈ V
1514elintrab 4891 . . . . . . . . 9 (𝑞 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦))
1613, 15anbi12i 627 . . . . . . . 8 ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) ↔ (∀𝑦𝑆 (𝑋𝑦𝑝𝑦) ∧ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦)))
179, 11, 163bitr4ri 304 . . . . . . 7 ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) ↔ ∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)))
18 simpll1 1211 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝐾𝑉)
19 simplr 766 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑦𝑆)
20 simpll3 1213 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟𝐴)
21 simprl 768 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑝𝑦)
22 simprr 770 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑞𝑦)
23 simpll2 1212 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))
24 eqid 2738 . . . . . . . . . . . . . . 15 (le‘𝐾) = (le‘𝐾)
25 eqid 2738 . . . . . . . . . . . . . . 15 (join‘𝐾) = (join‘𝐾)
2624, 25, 1, 2psubspi2N 37762 . . . . . . . . . . . . . 14 (((𝐾𝑉𝑦𝑆𝑟𝐴) ∧ (𝑝𝑦𝑞𝑦𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟𝑦)
2718, 19, 20, 21, 22, 23, 26syl33anc 1384 . . . . . . . . . . . . 13 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟𝑦)
2827ex 413 . . . . . . . . . . . 12 (((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) → ((𝑝𝑦𝑞𝑦) → 𝑟𝑦))
2928imim2d 57 . . . . . . . . . . 11 (((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) → ((𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → (𝑋𝑦𝑟𝑦)))
3029ralimdva 3108 . . . . . . . . . 10 ((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → ∀𝑦𝑆 (𝑋𝑦𝑟𝑦)))
31 vex 3436 . . . . . . . . . . 11 𝑟 ∈ V
3231elintrab 4891 . . . . . . . . . 10 (𝑟 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑟𝑦))
3330, 32syl6ibr 251 . . . . . . . . 9 ((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → 𝑟 {𝑦𝑆𝑋𝑦}))
34333exp 1118 . . . . . . . 8 (𝐾𝑉 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟𝐴 → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3534com24 95 . . . . . . 7 (𝐾𝑉 → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3617, 35syl5bi 241 . . . . . 6 (𝐾𝑉 → ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3736ralrimdv 3105 . . . . 5 (𝐾𝑉 → ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦})))
3837ralrimivv 3122 . . . 4 (𝐾𝑉 → ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))
3938adantr 481 . . 3 ((𝐾𝑉𝑋𝐴) → ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))
4024, 25, 1, 2ispsubsp 37759 . . . 4 (𝐾𝑉 → ( {𝑦𝑆𝑋𝑦} ∈ 𝑆 ↔ ( {𝑦𝑆𝑋𝑦} ⊆ 𝐴 ∧ ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
4140adantr 481 . . 3 ((𝐾𝑉𝑋𝐴) → ( {𝑦𝑆𝑋𝑦} ∈ 𝑆 ↔ ( {𝑦𝑆𝑋𝑦} ⊆ 𝐴 ∧ ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
428, 39, 41mpbir2and 710 . 2 ((𝐾𝑉𝑋𝐴) → {𝑦𝑆𝑋𝑦} ∈ 𝑆)
434, 42eqeltrd 2839 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887   cint 4879   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  PSubSpcpsubsp 37510  PClcpclN 37901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-psubsp 37517  df-pclN 37902
This theorem is referenced by:  pclunN  37912  pclfinN  37914
  Copyright terms: Public domain W3C validator