Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclclN Structured version   Visualization version   GIF version

Theorem pclclN 39880
Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclclN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclclN
Dummy variables 𝑦 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . 3 𝐴 = (Atoms‘𝐾)
2 pclfval.s . . 3 𝑆 = (PSubSp‘𝐾)
3 pclfval.c . . 3 𝑈 = (PCl‘𝐾)
41, 2, 3pclvalN 39879 . 2 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
51, 2atpsubN 39742 . . . 4 (𝐾𝑉𝐴𝑆)
6 sseq2 3975 . . . . 5 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
76intminss 4940 . . . 4 ((𝐴𝑆𝑋𝐴) → {𝑦𝑆𝑋𝑦} ⊆ 𝐴)
85, 7sylan 580 . . 3 ((𝐾𝑉𝑋𝐴) → {𝑦𝑆𝑋𝑦} ⊆ 𝐴)
9 r19.26 3092 . . . . . . . 8 (∀𝑦𝑆 ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)) ↔ (∀𝑦𝑆 (𝑋𝑦𝑝𝑦) ∧ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦)))
10 jcab 517 . . . . . . . . 9 ((𝑋𝑦 → (𝑝𝑦𝑞𝑦)) ↔ ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)))
1110ralbii 3076 . . . . . . . 8 (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) ↔ ∀𝑦𝑆 ((𝑋𝑦𝑝𝑦) ∧ (𝑋𝑦𝑞𝑦)))
12 vex 3454 . . . . . . . . . 10 𝑝 ∈ V
1312elintrab 4926 . . . . . . . . 9 (𝑝 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑝𝑦))
14 vex 3454 . . . . . . . . . 10 𝑞 ∈ V
1514elintrab 4926 . . . . . . . . 9 (𝑞 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦))
1613, 15anbi12i 628 . . . . . . . 8 ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) ↔ (∀𝑦𝑆 (𝑋𝑦𝑝𝑦) ∧ ∀𝑦𝑆 (𝑋𝑦𝑞𝑦)))
179, 11, 163bitr4ri 304 . . . . . . 7 ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) ↔ ∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)))
18 simpll1 1213 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝐾𝑉)
19 simplr 768 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑦𝑆)
20 simpll3 1215 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟𝐴)
21 simprl 770 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑝𝑦)
22 simprr 772 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑞𝑦)
23 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))
24 eqid 2730 . . . . . . . . . . . . . . 15 (le‘𝐾) = (le‘𝐾)
25 eqid 2730 . . . . . . . . . . . . . . 15 (join‘𝐾) = (join‘𝐾)
2624, 25, 1, 2psubspi2N 39737 . . . . . . . . . . . . . 14 (((𝐾𝑉𝑦𝑆𝑟𝐴) ∧ (𝑝𝑦𝑞𝑦𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟𝑦)
2718, 19, 20, 21, 22, 23, 26syl33anc 1387 . . . . . . . . . . . . 13 ((((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) ∧ (𝑝𝑦𝑞𝑦)) → 𝑟𝑦)
2827ex 412 . . . . . . . . . . . 12 (((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) → ((𝑝𝑦𝑞𝑦) → 𝑟𝑦))
2928imim2d 57 . . . . . . . . . . 11 (((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) ∧ 𝑦𝑆) → ((𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → (𝑋𝑦𝑟𝑦)))
3029ralimdva 3146 . . . . . . . . . 10 ((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → ∀𝑦𝑆 (𝑋𝑦𝑟𝑦)))
31 vex 3454 . . . . . . . . . . 11 𝑟 ∈ V
3231elintrab 4926 . . . . . . . . . 10 (𝑟 {𝑦𝑆𝑋𝑦} ↔ ∀𝑦𝑆 (𝑋𝑦𝑟𝑦))
3330, 32imbitrrdi 252 . . . . . . . . 9 ((𝐾𝑉𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ∧ 𝑟𝐴) → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → 𝑟 {𝑦𝑆𝑋𝑦}))
34333exp 1119 . . . . . . . 8 (𝐾𝑉 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → (𝑟𝐴 → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3534com24 95 . . . . . . 7 (𝐾𝑉 → (∀𝑦𝑆 (𝑋𝑦 → (𝑝𝑦𝑞𝑦)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3617, 35biimtrid 242 . . . . . 6 (𝐾𝑉 → ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
3736ralrimdv 3132 . . . . 5 (𝐾𝑉 → ((𝑝 {𝑦𝑆𝑋𝑦} ∧ 𝑞 {𝑦𝑆𝑋𝑦}) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦})))
3837ralrimivv 3179 . . . 4 (𝐾𝑉 → ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))
3938adantr 480 . . 3 ((𝐾𝑉𝑋𝐴) → ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))
4024, 25, 1, 2ispsubsp 39734 . . . 4 (𝐾𝑉 → ( {𝑦𝑆𝑋𝑦} ∈ 𝑆 ↔ ( {𝑦𝑆𝑋𝑦} ⊆ 𝐴 ∧ ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
4140adantr 480 . . 3 ((𝐾𝑉𝑋𝐴) → ( {𝑦𝑆𝑋𝑦} ∈ 𝑆 ↔ ( {𝑦𝑆𝑋𝑦} ⊆ 𝐴 ∧ ∀𝑝 {𝑦𝑆𝑋𝑦}∀𝑞 {𝑦𝑆𝑋𝑦}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 {𝑦𝑆𝑋𝑦}))))
428, 39, 41mpbir2and 713 . 2 ((𝐾𝑉𝑋𝐴) → {𝑦𝑆𝑋𝑦} ∈ 𝑆)
434, 42eqeltrd 2829 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3916   cint 4912   class class class wbr 5109  cfv 6513  (class class class)co 7389  lecple 17233  joincjn 18278  Atomscatm 39251  PSubSpcpsubsp 39485  PClcpclN 39876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-psubsp 39492  df-pclN 39877
This theorem is referenced by:  pclunN  39887  pclfinN  39889
  Copyright terms: Public domain W3C validator