MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Visualization version   GIF version

Theorem ostthlem2 27586
Description: Lemma for ostth 27597. Refine ostthlem1 27585 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem2.3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
Assertion
Ref Expression
ostthlem2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐺,𝑝   𝜑,𝑝   𝐴,𝑝   𝐹,𝑝
Allowed substitution hint:   𝑄(𝑝)

Proof of Theorem ostthlem2
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostthlem1.1 . 2 (𝜑𝐹𝐴)
4 ostthlem1.2 . 2 (𝜑𝐺𝐴)
5 eluz2nn 12792 . . 3 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
6 fveq2 6831 . . . . . . 7 (𝑝 = 1 → (𝐹𝑝) = (𝐹‘1))
7 fveq2 6831 . . . . . . 7 (𝑝 = 1 → (𝐺𝑝) = (𝐺‘1))
86, 7eqeq12d 2749 . . . . . 6 (𝑝 = 1 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘1) = (𝐺‘1)))
98imbi2d 340 . . . . 5 (𝑝 = 1 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘1) = (𝐺‘1))))
10 fveq2 6831 . . . . . . 7 (𝑝 = 𝑦 → (𝐹𝑝) = (𝐹𝑦))
11 fveq2 6831 . . . . . . 7 (𝑝 = 𝑦 → (𝐺𝑝) = (𝐺𝑦))
1210, 11eqeq12d 2749 . . . . . 6 (𝑝 = 𝑦 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑦) = (𝐺𝑦)))
1312imbi2d 340 . . . . 5 (𝑝 = 𝑦 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑦) = (𝐺𝑦))))
14 fveq2 6831 . . . . . . 7 (𝑝 = 𝑧 → (𝐹𝑝) = (𝐹𝑧))
15 fveq2 6831 . . . . . . 7 (𝑝 = 𝑧 → (𝐺𝑝) = (𝐺𝑧))
1614, 15eqeq12d 2749 . . . . . 6 (𝑝 = 𝑧 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑧) = (𝐺𝑧)))
1716imbi2d 340 . . . . 5 (𝑝 = 𝑧 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
18 fveq2 6831 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐹𝑝) = (𝐹‘(𝑦 · 𝑧)))
19 fveq2 6831 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐺𝑝) = (𝐺‘(𝑦 · 𝑧)))
2018, 19eqeq12d 2749 . . . . . 6 (𝑝 = (𝑦 · 𝑧) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
2120imbi2d 340 . . . . 5 (𝑝 = (𝑦 · 𝑧) → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
22 fveq2 6831 . . . . . . 7 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
23 fveq2 6831 . . . . . . 7 (𝑝 = 𝑛 → (𝐺𝑝) = (𝐺𝑛))
2422, 23eqeq12d 2749 . . . . . 6 (𝑝 = 𝑛 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑛) = (𝐺𝑛)))
2524imbi2d 340 . . . . 5 (𝑝 = 𝑛 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑛) = (𝐺𝑛))))
26 ax-1ne0 11086 . . . . . . 7 1 ≠ 0
271qrng1 27580 . . . . . . . 8 1 = (1r𝑄)
281qrng0 27579 . . . . . . . 8 0 = (0g𝑄)
292, 27, 28abv1z 20748 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
303, 26, 29sylancl 586 . . . . . 6 (𝜑 → (𝐹‘1) = 1)
312, 27, 28abv1z 20748 . . . . . . 7 ((𝐺𝐴 ∧ 1 ≠ 0) → (𝐺‘1) = 1)
324, 26, 31sylancl 586 . . . . . 6 (𝜑 → (𝐺‘1) = 1)
3330, 32eqtr4d 2771 . . . . 5 (𝜑 → (𝐹‘1) = (𝐺‘1))
34 ostthlem2.3 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
3534expcom 413 . . . . 5 (𝑝 ∈ ℙ → (𝜑 → (𝐹𝑝) = (𝐺𝑝)))
36 jcab 517 . . . . . 6 ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) ↔ ((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
37 oveq12 7364 . . . . . . . . 9 (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
383adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐹𝐴)
39 eluzelz 12752 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
4039ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℤ)
41 zq 12858 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
4240, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℚ)
43 eluzelz 12752 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
4443ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℤ)
45 zq 12858 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℚ)
471qrngbas 27577 . . . . . . . . . . . 12 ℚ = (Base‘𝑄)
48 qex 12865 . . . . . . . . . . . . 13 ℚ ∈ V
49 cnfldmul 21308 . . . . . . . . . . . . . 14 · = (.r‘ℂfld)
501, 49ressmulr 17218 . . . . . . . . . . . . 13 (ℚ ∈ V → · = (.r𝑄))
5148, 50ax-mp 5 . . . . . . . . . . . 12 · = (.r𝑄)
522, 47, 51abvmul 20745 . . . . . . . . . . 11 ((𝐹𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
5338, 42, 46, 52syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
544adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐺𝐴)
552, 47, 51abvmul 20745 . . . . . . . . . . 11 ((𝐺𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5654, 42, 46, 55syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5753, 56eqeq12d 2749 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → ((𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)) ↔ ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧))))
5837, 57imbitrrid 246 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
5958expcom 413 . . . . . . 7 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (𝜑 → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6059a2d 29 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6136, 60biimtrrid 243 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
629, 13, 17, 21, 25, 33, 35, 61prmind 16604 . . . 4 (𝑛 ∈ ℕ → (𝜑 → (𝐹𝑛) = (𝐺𝑛)))
6362impcom 407 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
645, 63sylan2 593 . 2 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
651, 2, 3, 4, 64ostthlem1 27585 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   · cmul 11022  cn 12136  2c2 12191  cz 12479  cuz 12742  cq 12852  cprime 16589  s cress 17148  .rcmulr 17169  AbsValcabv 20732  fldccnfld 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-ico 13258  df-fz 13415  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-prm 16590  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-subg 19044  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-subrng 20470  df-subrg 20494  df-drng 20655  df-abv 20733  df-cnfld 21301
This theorem is referenced by:  ostth1  27591  ostth3  27596
  Copyright terms: Public domain W3C validator