MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Visualization version   GIF version

Theorem ostthlem2 27672
Description: Lemma for ostth 27683. Refine ostthlem1 27671 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem2.3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
Assertion
Ref Expression
ostthlem2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐺,𝑝   𝜑,𝑝   𝐴,𝑝   𝐹,𝑝
Allowed substitution hint:   𝑄(𝑝)

Proof of Theorem ostthlem2
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostthlem1.1 . 2 (𝜑𝐹𝐴)
4 ostthlem1.2 . 2 (𝜑𝐺𝐴)
5 eluz2nn 12924 . . 3 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
6 fveq2 6906 . . . . . . 7 (𝑝 = 1 → (𝐹𝑝) = (𝐹‘1))
7 fveq2 6906 . . . . . . 7 (𝑝 = 1 → (𝐺𝑝) = (𝐺‘1))
86, 7eqeq12d 2753 . . . . . 6 (𝑝 = 1 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘1) = (𝐺‘1)))
98imbi2d 340 . . . . 5 (𝑝 = 1 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘1) = (𝐺‘1))))
10 fveq2 6906 . . . . . . 7 (𝑝 = 𝑦 → (𝐹𝑝) = (𝐹𝑦))
11 fveq2 6906 . . . . . . 7 (𝑝 = 𝑦 → (𝐺𝑝) = (𝐺𝑦))
1210, 11eqeq12d 2753 . . . . . 6 (𝑝 = 𝑦 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑦) = (𝐺𝑦)))
1312imbi2d 340 . . . . 5 (𝑝 = 𝑦 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑦) = (𝐺𝑦))))
14 fveq2 6906 . . . . . . 7 (𝑝 = 𝑧 → (𝐹𝑝) = (𝐹𝑧))
15 fveq2 6906 . . . . . . 7 (𝑝 = 𝑧 → (𝐺𝑝) = (𝐺𝑧))
1614, 15eqeq12d 2753 . . . . . 6 (𝑝 = 𝑧 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑧) = (𝐺𝑧)))
1716imbi2d 340 . . . . 5 (𝑝 = 𝑧 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
18 fveq2 6906 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐹𝑝) = (𝐹‘(𝑦 · 𝑧)))
19 fveq2 6906 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐺𝑝) = (𝐺‘(𝑦 · 𝑧)))
2018, 19eqeq12d 2753 . . . . . 6 (𝑝 = (𝑦 · 𝑧) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
2120imbi2d 340 . . . . 5 (𝑝 = (𝑦 · 𝑧) → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
22 fveq2 6906 . . . . . . 7 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
23 fveq2 6906 . . . . . . 7 (𝑝 = 𝑛 → (𝐺𝑝) = (𝐺𝑛))
2422, 23eqeq12d 2753 . . . . . 6 (𝑝 = 𝑛 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑛) = (𝐺𝑛)))
2524imbi2d 340 . . . . 5 (𝑝 = 𝑛 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑛) = (𝐺𝑛))))
26 ax-1ne0 11224 . . . . . . 7 1 ≠ 0
271qrng1 27666 . . . . . . . 8 1 = (1r𝑄)
281qrng0 27665 . . . . . . . 8 0 = (0g𝑄)
292, 27, 28abv1z 20825 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
303, 26, 29sylancl 586 . . . . . 6 (𝜑 → (𝐹‘1) = 1)
312, 27, 28abv1z 20825 . . . . . . 7 ((𝐺𝐴 ∧ 1 ≠ 0) → (𝐺‘1) = 1)
324, 26, 31sylancl 586 . . . . . 6 (𝜑 → (𝐺‘1) = 1)
3330, 32eqtr4d 2780 . . . . 5 (𝜑 → (𝐹‘1) = (𝐺‘1))
34 ostthlem2.3 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
3534expcom 413 . . . . 5 (𝑝 ∈ ℙ → (𝜑 → (𝐹𝑝) = (𝐺𝑝)))
36 jcab 517 . . . . . 6 ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) ↔ ((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
37 oveq12 7440 . . . . . . . . 9 (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
383adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐹𝐴)
39 eluzelz 12888 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
4039ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℤ)
41 zq 12996 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
4240, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℚ)
43 eluzelz 12888 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
4443ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℤ)
45 zq 12996 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℚ)
471qrngbas 27663 . . . . . . . . . . . 12 ℚ = (Base‘𝑄)
48 qex 13003 . . . . . . . . . . . . 13 ℚ ∈ V
49 cnfldmul 21372 . . . . . . . . . . . . . 14 · = (.r‘ℂfld)
501, 49ressmulr 17351 . . . . . . . . . . . . 13 (ℚ ∈ V → · = (.r𝑄))
5148, 50ax-mp 5 . . . . . . . . . . . 12 · = (.r𝑄)
522, 47, 51abvmul 20822 . . . . . . . . . . 11 ((𝐹𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
5338, 42, 46, 52syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
544adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐺𝐴)
552, 47, 51abvmul 20822 . . . . . . . . . . 11 ((𝐺𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5654, 42, 46, 55syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5753, 56eqeq12d 2753 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → ((𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)) ↔ ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧))))
5837, 57imbitrrid 246 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
5958expcom 413 . . . . . . 7 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (𝜑 → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6059a2d 29 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6136, 60biimtrrid 243 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
629, 13, 17, 21, 25, 33, 35, 61prmind 16723 . . . 4 (𝑛 ∈ ℕ → (𝜑 → (𝐹𝑛) = (𝐺𝑛)))
6362impcom 407 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
645, 63sylan2 593 . 2 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
651, 2, 3, 4, 64ostthlem1 27671 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   · cmul 11160  cn 12266  2c2 12321  cz 12613  cuz 12878  cq 12990  cprime 16708  s cress 17274  .rcmulr 17298  AbsValcabv 20809  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-ico 13393  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrng 20546  df-subrg 20570  df-drng 20731  df-abv 20810  df-cnfld 21365
This theorem is referenced by:  ostth1  27677  ostth3  27682
  Copyright terms: Public domain W3C validator