Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Visualization version   GIF version

Theorem ostthlem2 26118
 Description: Lemma for ostth 26129. Refine ostthlem1 26117 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem2.3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
Assertion
Ref Expression
ostthlem2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐺,𝑝   𝜑,𝑝   𝐴,𝑝   𝐹,𝑝
Allowed substitution hint:   𝑄(𝑝)

Proof of Theorem ostthlem2
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostthlem1.1 . 2 (𝜑𝐹𝐴)
4 ostthlem1.2 . 2 (𝜑𝐺𝐴)
5 eluz2nn 12276 . . 3 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
6 fveq2 6666 . . . . . . 7 (𝑝 = 1 → (𝐹𝑝) = (𝐹‘1))
7 fveq2 6666 . . . . . . 7 (𝑝 = 1 → (𝐺𝑝) = (𝐺‘1))
86, 7eqeq12d 2841 . . . . . 6 (𝑝 = 1 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘1) = (𝐺‘1)))
98imbi2d 342 . . . . 5 (𝑝 = 1 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘1) = (𝐺‘1))))
10 fveq2 6666 . . . . . . 7 (𝑝 = 𝑦 → (𝐹𝑝) = (𝐹𝑦))
11 fveq2 6666 . . . . . . 7 (𝑝 = 𝑦 → (𝐺𝑝) = (𝐺𝑦))
1210, 11eqeq12d 2841 . . . . . 6 (𝑝 = 𝑦 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑦) = (𝐺𝑦)))
1312imbi2d 342 . . . . 5 (𝑝 = 𝑦 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑦) = (𝐺𝑦))))
14 fveq2 6666 . . . . . . 7 (𝑝 = 𝑧 → (𝐹𝑝) = (𝐹𝑧))
15 fveq2 6666 . . . . . . 7 (𝑝 = 𝑧 → (𝐺𝑝) = (𝐺𝑧))
1614, 15eqeq12d 2841 . . . . . 6 (𝑝 = 𝑧 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑧) = (𝐺𝑧)))
1716imbi2d 342 . . . . 5 (𝑝 = 𝑧 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
18 fveq2 6666 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐹𝑝) = (𝐹‘(𝑦 · 𝑧)))
19 fveq2 6666 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐺𝑝) = (𝐺‘(𝑦 · 𝑧)))
2018, 19eqeq12d 2841 . . . . . 6 (𝑝 = (𝑦 · 𝑧) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
2120imbi2d 342 . . . . 5 (𝑝 = (𝑦 · 𝑧) → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
22 fveq2 6666 . . . . . . 7 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
23 fveq2 6666 . . . . . . 7 (𝑝 = 𝑛 → (𝐺𝑝) = (𝐺𝑛))
2422, 23eqeq12d 2841 . . . . . 6 (𝑝 = 𝑛 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑛) = (𝐺𝑛)))
2524imbi2d 342 . . . . 5 (𝑝 = 𝑛 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑛) = (𝐺𝑛))))
26 ax-1ne0 10598 . . . . . . 7 1 ≠ 0
271qrng1 26112 . . . . . . . 8 1 = (1r𝑄)
281qrng0 26111 . . . . . . . 8 0 = (0g𝑄)
292, 27, 28abv1z 19525 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
303, 26, 29sylancl 586 . . . . . 6 (𝜑 → (𝐹‘1) = 1)
312, 27, 28abv1z 19525 . . . . . . 7 ((𝐺𝐴 ∧ 1 ≠ 0) → (𝐺‘1) = 1)
324, 26, 31sylancl 586 . . . . . 6 (𝜑 → (𝐺‘1) = 1)
3330, 32eqtr4d 2863 . . . . 5 (𝜑 → (𝐹‘1) = (𝐺‘1))
34 ostthlem2.3 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
3534expcom 414 . . . . 5 (𝑝 ∈ ℙ → (𝜑 → (𝐹𝑝) = (𝐺𝑝)))
36 jcab 518 . . . . . 6 ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) ↔ ((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
37 oveq12 7160 . . . . . . . . 9 (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
383adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐹𝐴)
39 eluzelz 12245 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
4039ad2antrl 724 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℤ)
41 zq 12346 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
4240, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℚ)
43 eluzelz 12245 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
4443ad2antll 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℤ)
45 zq 12346 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℚ)
471qrngbas 26109 . . . . . . . . . . . 12 ℚ = (Base‘𝑄)
48 qex 12353 . . . . . . . . . . . . 13 ℚ ∈ V
49 cnfldmul 20467 . . . . . . . . . . . . . 14 · = (.r‘ℂfld)
501, 49ressmulr 16617 . . . . . . . . . . . . 13 (ℚ ∈ V → · = (.r𝑄))
5148, 50ax-mp 5 . . . . . . . . . . . 12 · = (.r𝑄)
522, 47, 51abvmul 19522 . . . . . . . . . . 11 ((𝐹𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
5338, 42, 46, 52syl3anc 1365 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
544adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐺𝐴)
552, 47, 51abvmul 19522 . . . . . . . . . . 11 ((𝐺𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5654, 42, 46, 55syl3anc 1365 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5753, 56eqeq12d 2841 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → ((𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)) ↔ ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧))))
5837, 57syl5ibr 247 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
5958expcom 414 . . . . . . 7 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (𝜑 → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6059a2d 29 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6136, 60syl5bir 244 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
629, 13, 17, 21, 25, 33, 35, 61prmind 16022 . . . 4 (𝑛 ∈ ℕ → (𝜑 → (𝐹𝑛) = (𝐺𝑛)))
6362impcom 408 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
645, 63sylan2 592 . 2 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
651, 2, 3, 4, 64ostthlem1 26117 1 (𝜑𝐹 = 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  Vcvv 3499  ‘cfv 6351  (class class class)co 7151  0cc0 10529  1c1 10530   · cmul 10534  ℕcn 11630  2c2 11684  ℤcz 11973  ℤ≥cuz 12235  ℚcq 12340  ℙcprime 16007   ↾s cress 16476  .rcmulr 16558  AbsValcabv 19509  ℂfldccnfld 20461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-ico 12737  df-fz 12886  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-prm 16008  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039  df-subg 18208  df-cmn 18830  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-drng 19426  df-subrg 19455  df-abv 19510  df-cnfld 20462 This theorem is referenced by:  ostth1  26123  ostth3  26128
 Copyright terms: Public domain W3C validator