MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Visualization version   GIF version

Theorem ostthlem2 27596
Description: Lemma for ostth 27607. Refine ostthlem1 27595 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
ostthlem1.1 (𝜑𝐹𝐴)
ostthlem1.2 (𝜑𝐺𝐴)
ostthlem2.3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
Assertion
Ref Expression
ostthlem2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐺,𝑝   𝜑,𝑝   𝐴,𝑝   𝐹,𝑝
Allowed substitution hint:   𝑄(𝑝)

Proof of Theorem ostthlem2
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostthlem1.1 . 2 (𝜑𝐹𝐴)
4 ostthlem1.2 . 2 (𝜑𝐺𝐴)
5 eluz2nn 12903 . . 3 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
6 fveq2 6881 . . . . . . 7 (𝑝 = 1 → (𝐹𝑝) = (𝐹‘1))
7 fveq2 6881 . . . . . . 7 (𝑝 = 1 → (𝐺𝑝) = (𝐺‘1))
86, 7eqeq12d 2752 . . . . . 6 (𝑝 = 1 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘1) = (𝐺‘1)))
98imbi2d 340 . . . . 5 (𝑝 = 1 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘1) = (𝐺‘1))))
10 fveq2 6881 . . . . . . 7 (𝑝 = 𝑦 → (𝐹𝑝) = (𝐹𝑦))
11 fveq2 6881 . . . . . . 7 (𝑝 = 𝑦 → (𝐺𝑝) = (𝐺𝑦))
1210, 11eqeq12d 2752 . . . . . 6 (𝑝 = 𝑦 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑦) = (𝐺𝑦)))
1312imbi2d 340 . . . . 5 (𝑝 = 𝑦 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑦) = (𝐺𝑦))))
14 fveq2 6881 . . . . . . 7 (𝑝 = 𝑧 → (𝐹𝑝) = (𝐹𝑧))
15 fveq2 6881 . . . . . . 7 (𝑝 = 𝑧 → (𝐺𝑝) = (𝐺𝑧))
1614, 15eqeq12d 2752 . . . . . 6 (𝑝 = 𝑧 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑧) = (𝐺𝑧)))
1716imbi2d 340 . . . . 5 (𝑝 = 𝑧 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
18 fveq2 6881 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐹𝑝) = (𝐹‘(𝑦 · 𝑧)))
19 fveq2 6881 . . . . . . 7 (𝑝 = (𝑦 · 𝑧) → (𝐺𝑝) = (𝐺‘(𝑦 · 𝑧)))
2018, 19eqeq12d 2752 . . . . . 6 (𝑝 = (𝑦 · 𝑧) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
2120imbi2d 340 . . . . 5 (𝑝 = (𝑦 · 𝑧) → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
22 fveq2 6881 . . . . . . 7 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
23 fveq2 6881 . . . . . . 7 (𝑝 = 𝑛 → (𝐺𝑝) = (𝐺𝑛))
2422, 23eqeq12d 2752 . . . . . 6 (𝑝 = 𝑛 → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹𝑛) = (𝐺𝑛)))
2524imbi2d 340 . . . . 5 (𝑝 = 𝑛 → ((𝜑 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝜑 → (𝐹𝑛) = (𝐺𝑛))))
26 ax-1ne0 11203 . . . . . . 7 1 ≠ 0
271qrng1 27590 . . . . . . . 8 1 = (1r𝑄)
281qrng0 27589 . . . . . . . 8 0 = (0g𝑄)
292, 27, 28abv1z 20789 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
303, 26, 29sylancl 586 . . . . . 6 (𝜑 → (𝐹‘1) = 1)
312, 27, 28abv1z 20789 . . . . . . 7 ((𝐺𝐴 ∧ 1 ≠ 0) → (𝐺‘1) = 1)
324, 26, 31sylancl 586 . . . . . 6 (𝜑 → (𝐺‘1) = 1)
3330, 32eqtr4d 2774 . . . . 5 (𝜑 → (𝐹‘1) = (𝐺‘1))
34 ostthlem2.3 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))
3534expcom 413 . . . . 5 (𝑝 ∈ ℙ → (𝜑 → (𝐹𝑝) = (𝐺𝑝)))
36 jcab 517 . . . . . 6 ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) ↔ ((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))))
37 oveq12 7419 . . . . . . . . 9 (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
383adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐹𝐴)
39 eluzelz 12867 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
4039ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℤ)
41 zq 12975 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
4240, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑦 ∈ ℚ)
43 eluzelz 12867 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
4443ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℤ)
45 zq 12975 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
4644, 45syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝑧 ∈ ℚ)
471qrngbas 27587 . . . . . . . . . . . 12 ℚ = (Base‘𝑄)
48 qex 12982 . . . . . . . . . . . . 13 ℚ ∈ V
49 cnfldmul 21328 . . . . . . . . . . . . . 14 · = (.r‘ℂfld)
501, 49ressmulr 17326 . . . . . . . . . . . . 13 (ℚ ∈ V → · = (.r𝑄))
5148, 50ax-mp 5 . . . . . . . . . . . 12 · = (.r𝑄)
522, 47, 51abvmul 20786 . . . . . . . . . . 11 ((𝐹𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
5338, 42, 46, 52syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
544adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → 𝐺𝐴)
552, 47, 51abvmul 20786 . . . . . . . . . . 11 ((𝐺𝐴𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5654, 42, 46, 55syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (𝐺‘(𝑦 · 𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
5753, 56eqeq12d 2752 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → ((𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)) ↔ ((𝐹𝑦) · (𝐹𝑧)) = ((𝐺𝑦) · (𝐺𝑧))))
5837, 57imbitrrid 246 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2))) → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧))))
5958expcom 413 . . . . . . 7 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (𝜑 → (((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧)) → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6059a2d 29 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜑 → ((𝐹𝑦) = (𝐺𝑦) ∧ (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
6136, 60biimtrrid 243 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝜑 → (𝐹𝑦) = (𝐺𝑦)) ∧ (𝜑 → (𝐹𝑧) = (𝐺𝑧))) → (𝜑 → (𝐹‘(𝑦 · 𝑧)) = (𝐺‘(𝑦 · 𝑧)))))
629, 13, 17, 21, 25, 33, 35, 61prmind 16710 . . . 4 (𝑛 ∈ ℕ → (𝜑 → (𝐹𝑛) = (𝐺𝑛)))
6362impcom 407 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐺𝑛))
645, 63sylan2 593 . 2 ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))
651, 2, 3, 4, 64ostthlem1 27595 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   · cmul 11139  cn 12245  2c2 12300  cz 12593  cuz 12857  cq 12969  cprime 16695  s cress 17256  .rcmulr 17277  AbsValcabv 20773  fldccnfld 21320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-ico 13373  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-prm 16696  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-subrng 20511  df-subrg 20535  df-drng 20696  df-abv 20774  df-cnfld 21321
This theorem is referenced by:  ostth1  27601  ostth3  27606
  Copyright terms: Public domain W3C validator