MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotr Structured version   Visualization version   GIF version

Theorem trclfvcotr 14720
Description: The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.)
Assertion
Ref Expression
trclfvcotr (𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))

Proof of Theorem trclfvcotr
Dummy variables 𝑎 𝑏 𝑐 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 6017 . . . . . . . . . 10 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
2 sp 2176 . . . . . . . . . . 11 (∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ∀𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
3219.21bbi 2183 . . . . . . . . . 10 (∀𝑎𝑏𝑐((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐) → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
41, 3sylbi 216 . . . . . . . . 9 ((𝑟𝑟) ⊆ 𝑟 → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
54adantl 482 . . . . . . . 8 ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ((𝑎𝑟𝑏𝑏𝑟𝑐) → 𝑎𝑟𝑐))
65a2i 14 . . . . . . 7 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
76alimi 1814 . . . . . 6 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
87ax-gen 1798 . . . . 5 𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
98ax-gen 1798 . . . 4 𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
109ax-gen 1798 . . 3 𝑎𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))
11 brtrclfv 14713 . . . . . . . 8 (𝑅𝑉 → (𝑎(t+‘𝑅)𝑏 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏)))
12 brtrclfv 14713 . . . . . . . 8 (𝑅𝑉 → (𝑏(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1311, 12anbi12d 631 . . . . . . 7 (𝑅𝑉 → ((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐))))
14 jcab 518 . . . . . . . . 9 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1514albii 1822 . . . . . . . 8 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ ∀𝑟(((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
16 19.26 1873 . . . . . . . 8 (∀𝑟(((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1715, 16bitri 274 . . . . . . 7 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑏) ∧ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑏𝑟𝑐)))
1813, 17bitr4di 289 . . . . . 6 (𝑅𝑉 → ((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐))))
19 brtrclfv 14713 . . . . . 6 (𝑅𝑉 → (𝑎(t+‘𝑅)𝑐 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐)))
2018, 19imbi12d 345 . . . . 5 (𝑅𝑉 → (((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
2120albidv 1923 . . . 4 (𝑅𝑉 → (∀𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
22212albidv 1926 . . 3 (𝑅𝑉 → (∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐) ↔ ∀𝑎𝑏𝑐(∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑎𝑟𝑏𝑏𝑟𝑐)) → ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝑎𝑟𝑐))))
2310, 22mpbiri 257 . 2 (𝑅𝑉 → ∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐))
24 cotr 6017 . 2 (((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) ↔ ∀𝑎𝑏𝑐((𝑎(t+‘𝑅)𝑏𝑏(t+‘𝑅)𝑐) → 𝑎(t+‘𝑅)𝑐))
2523, 24sylibr 233 1 (𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  wss 3887   class class class wbr 5074  ccom 5593  cfv 6433  t+ctcl 14696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-trcl 14698
This theorem is referenced by:  trclfvlb2  14721  trclidm  14724  trclfvcotrg  14727
  Copyright terms: Public domain W3C validator