| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrslem1 | Structured version Visualization version GIF version | ||
| Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 27-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrslem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrslem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrslem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrslem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| lclkrslem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrslem1.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrslem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrslem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| lclkrslem1.b | ⊢ 𝐵 = (Base‘𝑅) |
| lclkrslem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lclkrslem1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} |
| lclkrslem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrslem1.q | ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| lclkrslem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| lclkrslem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lclkrslem1 | ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lclkrslem1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lclkrslem1.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lclkrslem1.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lclkrslem1.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 5 | lclkrslem1.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 6 | lclkrslem1.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 7 | lclkrslem1.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 8 | lclkrslem1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | lclkrslem1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 10 | eqid 2731 | . . 3 ⊢ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 11 | lclkrslem1.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | lclkrslem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 13 | lclkrslem1.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐶) | |
| 14 | lclkrslem1.c | . . . . . 6 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} | |
| 15 | 14, 10 | lcfls1c 41641 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
| 16 | 15 | simplbi 497 | . . . 4 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 17 | 13, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17 | lclkrlem1 41611 | . 2 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 19 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 20 | 1, 3, 11 | dvhlmod 41215 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 21 | 14 | lcfls1lem 41639 | . . . . . . . 8 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
| 22 | 13, 21 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
| 23 | 22 | simp1d 1142 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 24 | 4, 7, 8, 6, 9, 20, 12, 23 | ldualvscl 39244 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) |
| 25 | 19, 4, 5, 20, 24 | lkrssv 39201 | . . . 4 ⊢ (𝜑 → (𝐿‘(𝑋 · 𝐺)) ⊆ (Base‘𝑈)) |
| 26 | 1, 3, 11 | dvhlvec 41214 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 27 | 7, 8, 4, 5, 6, 9, 26, 23, 12 | lkrss 39273 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) |
| 28 | 1, 3, 19, 2 | dochss 41470 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘(𝑋 · 𝐺)) ⊆ (Base‘𝑈) ∧ (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) → ( ⊥ ‘(𝐿‘(𝑋 · 𝐺))) ⊆ ( ⊥ ‘(𝐿‘𝐺))) |
| 29 | 11, 25, 27, 28 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝑋 · 𝐺))) ⊆ ( ⊥ ‘(𝐿‘𝐺))) |
| 30 | 22 | simp3d 1144 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄) |
| 31 | 29, 30 | sstrd 3940 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝑋 · 𝐺))) ⊆ 𝑄) |
| 32 | 14, 10 | lcfls1c 41641 | . 2 ⊢ ((𝑋 · 𝐺) ∈ 𝐶 ↔ ((𝑋 · 𝐺) ∈ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∧ ( ⊥ ‘(𝐿‘(𝑋 · 𝐺))) ⊆ 𝑄)) |
| 33 | 18, 31, 32 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 Scalarcsca 17170 ·𝑠 cvsca 17171 LSubSpclss 20870 LFnlclfn 39162 LKerclk 39190 LDualcld 39228 HLchlt 39455 LHypclh 40089 DVecHcdvh 41183 ocHcoch 41452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-riotaBAD 39058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-0g 17351 df-proset 18206 df-poset 18225 df-plt 18240 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p0 18335 df-p1 18336 df-lat 18344 df-clat 18411 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cntz 19235 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-dvr 20325 df-nzr 20434 df-rlreg 20615 df-domn 20616 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lfl 39163 df-lkr 39191 df-ldual 39229 df-oposet 39281 df-ol 39283 df-oml 39284 df-covers 39371 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-llines 39603 df-lplanes 39604 df-lvols 39605 df-lines 39606 df-psubsp 39608 df-pmap 39609 df-padd 39901 df-lhyp 40093 df-laut 40094 df-ldil 40209 df-ltrn 40210 df-trl 40264 df-tendo 40860 df-edring 40862 df-disoa 41134 df-dvech 41184 df-dib 41244 df-dic 41278 df-dih 41334 df-doch 41453 |
| This theorem is referenced by: lclkrs 41644 |
| Copyright terms: Public domain | W3C validator |