Step | Hyp | Ref
| Expression |
1 | | lclkrslem1.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | lclkrslem1.o |
. . 3
β’ β₯ =
((ocHβπΎ)βπ) |
3 | | lclkrslem1.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
4 | | lclkrslem1.f |
. . 3
β’ πΉ = (LFnlβπ) |
5 | | lclkrslem1.l |
. . 3
β’ πΏ = (LKerβπ) |
6 | | lclkrslem1.d |
. . 3
β’ π· = (LDualβπ) |
7 | | lclkrslem2.p |
. . 3
β’ + =
(+gβπ·) |
8 | | eqid 2732 |
. . 3
β’ {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
9 | | lclkrslem1.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
10 | | lclkrslem2.e |
. . . 4
β’ (π β πΈ β πΆ) |
11 | | lclkrslem1.c |
. . . . . 6
β’ πΆ = {π β πΉ β£ (( β₯ β( β₯
β(πΏβπ))) = (πΏβπ) β§ ( β₯ β(πΏβπ)) β π)} |
12 | 11, 8 | lcfls1c 40395 |
. . . . 5
β’ (πΈ β πΆ β (πΈ β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} β§ ( β₯ β(πΏβπΈ)) β π)) |
13 | 12 | simplbi 498 |
. . . 4
β’ (πΈ β πΆ β πΈ β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)}) |
14 | 10, 13 | syl 17 |
. . 3
β’ (π β πΈ β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)}) |
15 | | lclkrslem1.g |
. . . 4
β’ (π β πΊ β πΆ) |
16 | 11, 8 | lcfls1c 40395 |
. . . . 5
β’ (πΊ β πΆ β (πΊ β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} β§ ( β₯ β(πΏβπΊ)) β π)) |
17 | 16 | simplbi 498 |
. . . 4
β’ (πΊ β πΆ β πΊ β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)}) |
18 | 15, 17 | syl 17 |
. . 3
β’ (π β πΊ β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)}) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14,
18 | lclkrlem2 40391 |
. 2
β’ (π β (πΈ + πΊ) β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)}) |
20 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
21 | 1, 3, 9 | dvhlmod 39969 |
. . . . 5
β’ (π β π β LMod) |
22 | 11 | lcfls1lem 40393 |
. . . . . . . 8
β’ (πΈ β πΆ β (πΈ β πΉ β§ ( β₯ β( β₯
β(πΏβπΈ))) = (πΏβπΈ) β§ ( β₯ β(πΏβπΈ)) β π)) |
23 | 10, 22 | sylib 217 |
. . . . . . 7
β’ (π β (πΈ β πΉ β§ ( β₯ β( β₯
β(πΏβπΈ))) = (πΏβπΈ) β§ ( β₯ β(πΏβπΈ)) β π)) |
24 | 23 | simp1d 1142 |
. . . . . 6
β’ (π β πΈ β πΉ) |
25 | 11 | lcfls1lem 40393 |
. . . . . . . 8
β’ (πΊ β πΆ β (πΊ β πΉ β§ ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ) β§ ( β₯ β(πΏβπΊ)) β π)) |
26 | 15, 25 | sylib 217 |
. . . . . . 7
β’ (π β (πΊ β πΉ β§ ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ) β§ ( β₯ β(πΏβπΊ)) β π)) |
27 | 26 | simp1d 1142 |
. . . . . 6
β’ (π β πΊ β πΉ) |
28 | 4, 6, 7, 21, 24, 27 | ldualvaddcl 37988 |
. . . . 5
β’ (π β (πΈ + πΊ) β πΉ) |
29 | 20, 4, 5, 21, 28 | lkrssv 37954 |
. . . 4
β’ (π β (πΏβ(πΈ + πΊ)) β (Baseβπ)) |
30 | 4, 5, 6, 7, 21, 24, 27 | lkrin 38022 |
. . . 4
β’ (π β ((πΏβπΈ) β© (πΏβπΊ)) β (πΏβ(πΈ + πΊ))) |
31 | 1, 3, 20, 2 | dochss 40224 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (πΏβ(πΈ + πΊ)) β (Baseβπ) β§ ((πΏβπΈ) β© (πΏβπΊ)) β (πΏβ(πΈ + πΊ))) β ( β₯ β(πΏβ(πΈ + πΊ))) β ( β₯ β((πΏβπΈ) β© (πΏβπΊ)))) |
32 | 9, 29, 30, 31 | syl3anc 1371 |
. . 3
β’ (π β ( β₯ β(πΏβ(πΈ + πΊ))) β ( β₯ β((πΏβπΈ) β© (πΏβπΊ)))) |
33 | | eqid 2732 |
. . . . . 6
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
34 | | eqid 2732 |
. . . . . 6
β’
((joinHβπΎ)βπ) = ((joinHβπΎ)βπ) |
35 | 23 | simp2d 1143 |
. . . . . . 7
β’ (π β ( β₯ β( β₯
β(πΏβπΈ))) = (πΏβπΈ)) |
36 | 1, 33, 2, 3, 4, 5, 9, 24 | lcfl5a 40356 |
. . . . . . 7
β’ (π β (( β₯ β( β₯
β(πΏβπΈ))) = (πΏβπΈ) β (πΏβπΈ) β ran ((DIsoHβπΎ)βπ))) |
37 | 35, 36 | mpbid 231 |
. . . . . 6
β’ (π β (πΏβπΈ) β ran ((DIsoHβπΎ)βπ)) |
38 | 26 | simp2d 1143 |
. . . . . . 7
β’ (π β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
39 | 1, 33, 2, 3, 4, 5, 9, 27 | lcfl5a 40356 |
. . . . . . 7
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ) β (πΏβπΊ) β ran ((DIsoHβπΎ)βπ))) |
40 | 38, 39 | mpbid 231 |
. . . . . 6
β’ (π β (πΏβπΊ) β ran ((DIsoHβπΎ)βπ)) |
41 | 1, 33, 3, 20, 2, 34, 9, 37, 40 | dochdmm1 40269 |
. . . . 5
β’ (π β ( β₯ β((πΏβπΈ) β© (πΏβπΊ))) = (( β₯ β(πΏβπΈ))((joinHβπΎ)βπ)( β₯ β(πΏβπΊ)))) |
42 | | eqid 2732 |
. . . . . . 7
β’
(LSSumβπ) =
(LSSumβπ) |
43 | 20, 4, 5, 21, 24 | lkrssv 37954 |
. . . . . . . 8
β’ (π β (πΏβπΈ) β (Baseβπ)) |
44 | 1, 33, 3, 20, 2 | dochcl 40212 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (πΏβπΈ) β (Baseβπ)) β ( β₯ β(πΏβπΈ)) β ran ((DIsoHβπΎ)βπ)) |
45 | 9, 43, 44 | syl2anc 584 |
. . . . . . 7
β’ (π β ( β₯ β(πΏβπΈ)) β ran ((DIsoHβπΎ)βπ)) |
46 | 1, 33, 2, 3, 42, 4,
5, 9, 45, 27 | dochkrsm 40317 |
. . . . . 6
β’ (π β (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) β ran ((DIsoHβπΎ)βπ)) |
47 | | lclkrslem1.s |
. . . . . . 7
β’ π = (LSubSpβπ) |
48 | 1, 3, 20, 47, 2 | dochlss 40213 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (πΏβπΈ) β (Baseβπ)) β ( β₯ β(πΏβπΈ)) β π) |
49 | 9, 43, 48 | syl2anc 584 |
. . . . . . 7
β’ (π β ( β₯ β(πΏβπΈ)) β π) |
50 | 20, 4, 5, 21, 27 | lkrssv 37954 |
. . . . . . . 8
β’ (π β (πΏβπΊ) β (Baseβπ)) |
51 | 1, 3, 20, 47, 2 | dochlss 40213 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β (Baseβπ)) β ( β₯ β(πΏβπΊ)) β π) |
52 | 9, 50, 51 | syl2anc 584 |
. . . . . . 7
β’ (π β ( β₯ β(πΏβπΊ)) β π) |
53 | 1, 3, 20, 47, 42, 33, 34, 9, 49, 52 | djhlsmcl 40273 |
. . . . . 6
β’ (π β ((( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) β ran ((DIsoHβπΎ)βπ) β (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) = (( β₯ β(πΏβπΈ))((joinHβπΎ)βπ)( β₯ β(πΏβπΊ))))) |
54 | 46, 53 | mpbid 231 |
. . . . 5
β’ (π β (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) = (( β₯ β(πΏβπΈ))((joinHβπΎ)βπ)( β₯ β(πΏβπΊ)))) |
55 | 41, 54 | eqtr4d 2775 |
. . . 4
β’ (π β ( β₯ β((πΏβπΈ) β© (πΏβπΊ))) = (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ)))) |
56 | 23 | simp3d 1144 |
. . . . 5
β’ (π β ( β₯ β(πΏβπΈ)) β π) |
57 | 26 | simp3d 1144 |
. . . . 5
β’ (π β ( β₯ β(πΏβπΊ)) β π) |
58 | 47 | lsssssubg 20561 |
. . . . . . . 8
β’ (π β LMod β π β (SubGrpβπ)) |
59 | 21, 58 | syl 17 |
. . . . . . 7
β’ (π β π β (SubGrpβπ)) |
60 | 59, 49 | sseldd 3982 |
. . . . . 6
β’ (π β ( β₯ β(πΏβπΈ)) β (SubGrpβπ)) |
61 | 59, 52 | sseldd 3982 |
. . . . . 6
β’ (π β ( β₯ β(πΏβπΊ)) β (SubGrpβπ)) |
62 | | lclkrslem1.q |
. . . . . . 7
β’ (π β π β π) |
63 | 59, 62 | sseldd 3982 |
. . . . . 6
β’ (π β π β (SubGrpβπ)) |
64 | 42 | lsmlub 19526 |
. . . . . 6
β’ ((( β₯
β(πΏβπΈ)) β (SubGrpβπ) β§ ( β₯ β(πΏβπΊ)) β (SubGrpβπ) β§ π β (SubGrpβπ)) β ((( β₯ β(πΏβπΈ)) β π β§ ( β₯ β(πΏβπΊ)) β π) β (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) β π)) |
65 | 60, 61, 63, 64 | syl3anc 1371 |
. . . . 5
β’ (π β ((( β₯ β(πΏβπΈ)) β π β§ ( β₯ β(πΏβπΊ)) β π) β (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) β π)) |
66 | 56, 57, 65 | mpbi2and 710 |
. . . 4
β’ (π β (( β₯ β(πΏβπΈ))(LSSumβπ)( β₯ β(πΏβπΊ))) β π) |
67 | 55, 66 | eqsstrd 4019 |
. . 3
β’ (π β ( β₯ β((πΏβπΈ) β© (πΏβπΊ))) β π) |
68 | 32, 67 | sstrd 3991 |
. 2
β’ (π β ( β₯ β(πΏβ(πΈ + πΊ))) β π) |
69 | 11, 8 | lcfls1c 40395 |
. 2
β’ ((πΈ + πΊ) β πΆ β ((πΈ + πΊ) β {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} β§ ( β₯ β(πΏβ(πΈ + πΊ))) β π)) |
70 | 19, 68, 69 | sylanbrc 583 |
1
β’ (π β (πΈ + πΊ) β πΆ) |