MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidrideqd Structured version   Visualization version   GIF version

Theorem lidrideqd 18591
Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l (𝜑𝐿𝐵)
lidrideqd.r (𝜑𝑅𝐵)
lidrideqd.li (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
lidrideqd.ri (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
Assertion
Ref Expression
lidrideqd (𝜑𝐿 = 𝑅)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑅   𝑥, +
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem lidrideqd
StepHypRef Expression
1 oveq1 7408 . . . 4 (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅))
2 id 22 . . . 4 (𝑥 = 𝐿𝑥 = 𝐿)
31, 2eqeq12d 2740 . . 3 (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿))
4 lidrideqd.ri . . 3 (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
5 lidrideqd.l . . 3 (𝜑𝐿𝐵)
63, 4, 5rspcdva 3605 . 2 (𝜑 → (𝐿 + 𝑅) = 𝐿)
7 oveq2 7409 . . . 4 (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅))
8 id 22 . . . 4 (𝑥 = 𝑅𝑥 = 𝑅)
97, 8eqeq12d 2740 . . 3 (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅))
10 lidrideqd.li . . 3 (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
11 lidrideqd.r . . 3 (𝜑𝑅𝐵)
129, 10, 11rspcdva 3605 . 2 (𝜑 → (𝐿 + 𝑅) = 𝑅)
136, 12eqtr3d 2766 1 (𝜑𝐿 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3053  (class class class)co 7401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404
This theorem is referenced by:  lidrididd  18592
  Copyright terms: Public domain W3C validator