| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidrideqd | Structured version Visualization version GIF version | ||
| Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
| lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
| lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
| Ref | Expression |
|---|---|
| lidrideqd | ⊢ (𝜑 → 𝐿 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . . . 4 ⊢ (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐿 → 𝑥 = 𝐿) | |
| 3 | 1, 2 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿)) |
| 4 | lidrideqd.ri | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
| 5 | lidrideqd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
| 6 | 3, 4, 5 | rspcdva 3589 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝐿) |
| 7 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅)) | |
| 8 | id 22 | . . . 4 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 9 | 7, 8 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅)) |
| 10 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
| 11 | lidrideqd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 12 | 9, 10, 11 | rspcdva 3589 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝑅) |
| 13 | 6, 12 | eqtr3d 2766 | 1 ⊢ (𝜑 → 𝐿 = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: lidrididd 18597 |
| Copyright terms: Public domain | W3C validator |