Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidrideqd | Structured version Visualization version GIF version |
Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
Ref | Expression |
---|---|
lidrideqd | ⊢ (𝜑 → 𝐿 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7282 | . . . 4 ⊢ (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅)) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐿 → 𝑥 = 𝐿) | |
3 | 1, 2 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿)) |
4 | lidrideqd.ri | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
5 | lidrideqd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
6 | 3, 4, 5 | rspcdva 3562 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝐿) |
7 | oveq2 7283 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅)) | |
8 | id 22 | . . . 4 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
9 | 7, 8 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅)) |
10 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
11 | lidrideqd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
12 | 9, 10, 11 | rspcdva 3562 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝑅) |
13 | 6, 12 | eqtr3d 2780 | 1 ⊢ (𝜑 → 𝐿 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: lidrididd 18354 |
Copyright terms: Public domain | W3C validator |