| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidrididd | Structured version Visualization version GIF version | ||
| Description: If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 18574) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
| lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
| lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
| lidrideqd.b | ⊢ 𝐵 = (Base‘𝐺) |
| lidrideqd.p | ⊢ + = (+g‘𝐺) |
| lidrididd.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| lidrididd | ⊢ (𝜑 → 𝐿 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidrideqd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | lidrididd.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | lidrideqd.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | lidrideqd.l | . 2 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
| 5 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
| 6 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐿 + 𝑥) = (𝐿 + 𝑦)) | |
| 7 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 8 | 6, 7 | eqeq12d 2747 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑦) = 𝑦)) |
| 9 | 8 | rspcv 3573 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥 → (𝐿 + 𝑦) = 𝑦)) |
| 10 | 5, 9 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐿 + 𝑦) = 𝑦) |
| 11 | lidrideqd.ri | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
| 12 | lidrideqd.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 13 | 4, 12, 5, 11 | lidrideqd 18574 | . . . 4 ⊢ (𝜑 → 𝐿 = 𝑅) |
| 14 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝑅) = (𝑦 + 𝑅)) | |
| 15 | 14, 7 | eqeq12d 2747 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝑦 + 𝑅) = 𝑦)) |
| 16 | 15 | rspcv 3573 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 + 𝑅) = 𝑦)) |
| 17 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝐿 = 𝑅 → (𝑦 + 𝐿) = (𝑦 + 𝑅)) | |
| 18 | 17 | adantl 481 | . . . . . . . 8 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝐿) = (𝑦 + 𝑅)) |
| 19 | simpl 482 | . . . . . . . 8 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝑅) = 𝑦) | |
| 20 | 18, 19 | eqtrd 2766 | . . . . . . 7 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝐿) = 𝑦) |
| 21 | 20 | ex 412 | . . . . . 6 ⊢ ((𝑦 + 𝑅) = 𝑦 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦)) |
| 22 | 16, 21 | syl6com 37 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 ∈ 𝐵 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦))) |
| 23 | 22 | com23 86 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝐿 = 𝑅 → (𝑦 ∈ 𝐵 → (𝑦 + 𝐿) = 𝑦))) |
| 24 | 11, 13, 23 | sylc 65 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑦 + 𝐿) = 𝑦)) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 + 𝐿) = 𝑦) |
| 26 | 1, 2, 3, 4, 10, 25 | ismgmid2 18573 | 1 ⊢ (𝜑 → 𝐿 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |