| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidrididd | Structured version Visualization version GIF version | ||
| Description: If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 18652) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
| lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
| lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
| lidrideqd.b | ⊢ 𝐵 = (Base‘𝐺) |
| lidrideqd.p | ⊢ + = (+g‘𝐺) |
| lidrididd.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| lidrididd | ⊢ (𝜑 → 𝐿 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidrideqd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | lidrididd.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | lidrideqd.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | lidrideqd.l | . 2 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
| 5 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
| 6 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐿 + 𝑥) = (𝐿 + 𝑦)) | |
| 7 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 8 | 6, 7 | eqeq12d 2752 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑦) = 𝑦)) |
| 9 | 8 | rspcv 3602 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥 → (𝐿 + 𝑦) = 𝑦)) |
| 10 | 5, 9 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐿 + 𝑦) = 𝑦) |
| 11 | lidrideqd.ri | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
| 12 | lidrideqd.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 13 | 4, 12, 5, 11 | lidrideqd 18652 | . . . 4 ⊢ (𝜑 → 𝐿 = 𝑅) |
| 14 | oveq1 7417 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝑅) = (𝑦 + 𝑅)) | |
| 15 | 14, 7 | eqeq12d 2752 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝑦 + 𝑅) = 𝑦)) |
| 16 | 15 | rspcv 3602 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 + 𝑅) = 𝑦)) |
| 17 | oveq2 7418 | . . . . . . . . 9 ⊢ (𝐿 = 𝑅 → (𝑦 + 𝐿) = (𝑦 + 𝑅)) | |
| 18 | 17 | adantl 481 | . . . . . . . 8 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝐿) = (𝑦 + 𝑅)) |
| 19 | simpl 482 | . . . . . . . 8 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝑅) = 𝑦) | |
| 20 | 18, 19 | eqtrd 2771 | . . . . . . 7 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝐿) = 𝑦) |
| 21 | 20 | ex 412 | . . . . . 6 ⊢ ((𝑦 + 𝑅) = 𝑦 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦)) |
| 22 | 16, 21 | syl6com 37 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 ∈ 𝐵 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦))) |
| 23 | 22 | com23 86 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝐿 = 𝑅 → (𝑦 ∈ 𝐵 → (𝑦 + 𝐿) = 𝑦))) |
| 24 | 11, 13, 23 | sylc 65 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑦 + 𝐿) = 𝑦)) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 + 𝐿) = 𝑦) |
| 26 | 1, 2, 3, 4, 10, 25 | ismgmid2 18651 | 1 ⊢ (𝜑 → 𝐿 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |