MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidrididd Structured version   Visualization version   GIF version

Theorem lidrididd 18580
Description: If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 18579) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l (𝜑𝐿𝐵)
lidrideqd.r (𝜑𝑅𝐵)
lidrideqd.li (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
lidrideqd.ri (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
lidrideqd.b 𝐵 = (Base‘𝐺)
lidrideqd.p + = (+g𝐺)
lidrididd.o 0 = (0g𝐺)
Assertion
Ref Expression
lidrididd (𝜑𝐿 = 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑅   𝑥, +
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   0 (𝑥)

Proof of Theorem lidrididd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lidrideqd.b . 2 𝐵 = (Base‘𝐺)
2 lidrididd.o . 2 0 = (0g𝐺)
3 lidrideqd.p . 2 + = (+g𝐺)
4 lidrideqd.l . 2 (𝜑𝐿𝐵)
5 lidrideqd.li . . 3 (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
6 oveq2 7360 . . . . 5 (𝑥 = 𝑦 → (𝐿 + 𝑥) = (𝐿 + 𝑦))
7 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
86, 7eqeq12d 2749 . . . 4 (𝑥 = 𝑦 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑦) = 𝑦))
98rspcv 3569 . . 3 (𝑦𝐵 → (∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥 → (𝐿 + 𝑦) = 𝑦))
105, 9mpan9 506 . 2 ((𝜑𝑦𝐵) → (𝐿 + 𝑦) = 𝑦)
11 lidrideqd.ri . . . 4 (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
12 lidrideqd.r . . . . 5 (𝜑𝑅𝐵)
134, 12, 5, 11lidrideqd 18579 . . . 4 (𝜑𝐿 = 𝑅)
14 oveq1 7359 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 + 𝑅) = (𝑦 + 𝑅))
1514, 7eqeq12d 2749 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝑦 + 𝑅) = 𝑦))
1615rspcv 3569 . . . . . 6 (𝑦𝐵 → (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 + 𝑅) = 𝑦))
17 oveq2 7360 . . . . . . . . 9 (𝐿 = 𝑅 → (𝑦 + 𝐿) = (𝑦 + 𝑅))
1817adantl 481 . . . . . . . 8 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝐿) = (𝑦 + 𝑅))
19 simpl 482 . . . . . . . 8 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝑅) = 𝑦)
2018, 19eqtrd 2768 . . . . . . 7 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝐿) = 𝑦)
2120ex 412 . . . . . 6 ((𝑦 + 𝑅) = 𝑦 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦))
2216, 21syl6com 37 . . . . 5 (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦𝐵 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦)))
2322com23 86 . . . 4 (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝐿 = 𝑅 → (𝑦𝐵 → (𝑦 + 𝐿) = 𝑦)))
2411, 13, 23sylc 65 . . 3 (𝜑 → (𝑦𝐵 → (𝑦 + 𝐿) = 𝑦))
2524imp 406 . 2 ((𝜑𝑦𝐵) → (𝑦 + 𝐿) = 𝑦)
261, 2, 3, 4, 10, 25ismgmid2 18578 1 (𝜑𝐿 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator