![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismgmid2 | Structured version Visualization version GIF version |
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
ismgmid.o | ⊢ 0 = (0g‘𝐺) |
ismgmid.p | ⊢ + = (+g‘𝐺) |
ismgmid2.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
ismgmid2.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) |
ismgmid2.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) |
Ref | Expression |
---|---|
ismgmid2 | ⊢ (𝜑 → 𝑈 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmid2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
2 | ismgmid2.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) | |
3 | ismgmid2.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) | |
4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
5 | 4 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
6 | ismgmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ismgmid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
8 | ismgmid.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | oveq1 7455 | . . . . . . . 8 ⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) | |
10 | 9 | eqeq1d 2742 | . . . . . . 7 ⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
11 | 10 | ovanraleqv 7472 | . . . . . 6 ⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
12 | 11 | rspcev 3635 | . . . . 5 ⊢ ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
13 | 1, 5, 12 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
14 | 6, 7, 8, 13 | ismgmid 18703 | . . 3 ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |
15 | 1, 5, 14 | mpbi2and 711 | . 2 ⊢ (𝜑 → 0 = 𝑈) |
16 | 15 | eqcomd 2746 | 1 ⊢ (𝜑 → 𝑈 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 |
This theorem is referenced by: lidrididd 18708 grpidd 18709 submnd0 18801 xpsmnd0 18813 mnd1id 18815 frmd0 18895 efmndid 18923 pwmndid 18971 mhmid 19103 cnaddid 19912 ringidss 20300 xpsring1d 20356 xrs10 21446 rloccring 33242 idlsrg0g 33499 |
Copyright terms: Public domain | W3C validator |