Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismgmid2 | Structured version Visualization version GIF version |
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
ismgmid.o | ⊢ 0 = (0g‘𝐺) |
ismgmid.p | ⊢ + = (+g‘𝐺) |
ismgmid2.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
ismgmid2.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) |
ismgmid2.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) |
Ref | Expression |
---|---|
ismgmid2 | ⊢ (𝜑 → 𝑈 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmid2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
2 | ismgmid2.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) | |
3 | ismgmid2.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) | |
4 | 2, 3 | jca 512 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
5 | 4 | ralrimiva 3103 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
6 | ismgmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ismgmid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
8 | ismgmid.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) | |
10 | 9 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
11 | 10 | ovanraleqv 7299 | . . . . . 6 ⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
12 | 11 | rspcev 3561 | . . . . 5 ⊢ ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
13 | 1, 5, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
14 | 6, 7, 8, 13 | ismgmid 18349 | . . 3 ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |
15 | 1, 5, 14 | mpbi2and 709 | . 2 ⊢ (𝜑 → 0 = 𝑈) |
16 | 15 | eqcomd 2744 | 1 ⊢ (𝜑 → 𝑈 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 |
This theorem is referenced by: lidrididd 18354 grpidd 18355 submnd0 18414 mnd1id 18427 frmd0 18499 efmndid 18527 pwmndid 18575 mhmid 18696 cnaddid 19471 ringidss 19816 xrs10 20637 idlsrg0g 31651 |
Copyright terms: Public domain | W3C validator |