![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismgmid2 | Structured version Visualization version GIF version |
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
ismgmid.o | ⊢ 0 = (0g‘𝐺) |
ismgmid.p | ⊢ + = (+g‘𝐺) |
ismgmid2.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
ismgmid2.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) |
ismgmid2.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) |
Ref | Expression |
---|---|
ismgmid2 | ⊢ (𝜑 → 𝑈 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmid2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
2 | ismgmid2.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) | |
3 | ismgmid2.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) | |
4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
5 | 4 | ralrimiva 3138 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
6 | ismgmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ismgmid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
8 | ismgmid.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | oveq1 7408 | . . . . . . . 8 ⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) | |
10 | 9 | eqeq1d 2726 | . . . . . . 7 ⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
11 | 10 | ovanraleqv 7425 | . . . . . 6 ⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
12 | 11 | rspcev 3604 | . . . . 5 ⊢ ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
13 | 1, 5, 12 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
14 | 6, 7, 8, 13 | ismgmid 18585 | . . 3 ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |
15 | 1, 5, 14 | mpbi2and 709 | . 2 ⊢ (𝜑 → 0 = 𝑈) |
16 | 15 | eqcomd 2730 | 1 ⊢ (𝜑 → 𝑈 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 +gcplusg 17193 0gc0g 17381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-riota 7357 df-ov 7404 df-0g 17383 |
This theorem is referenced by: lidrididd 18590 grpidd 18591 submnd0 18683 xpsmnd0 18695 mnd1id 18697 frmd0 18772 efmndid 18800 pwmndid 18848 mhmid 18978 cnaddid 19775 ringidss 20161 xpsring1d 20217 xrs10 21263 idlsrg0g 33051 |
Copyright terms: Public domain | W3C validator |