MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmid2 Structured version   Visualization version   GIF version

Theorem ismgmid2 18646
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
ismgmid2.u (𝜑𝑈𝐵)
ismgmid2.l ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
ismgmid2.r ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
Assertion
Ref Expression
ismgmid2 (𝜑𝑈 = 0 )
Distinct variable groups:   𝑥, +   𝑥, 0   𝑥,𝐵   𝑥,𝐺   𝑥,𝑈   𝜑,𝑥

Proof of Theorem ismgmid2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3 (𝜑𝑈𝐵)
2 ismgmid2.l . . . . 5 ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
3 ismgmid2.r . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
42, 3jca 511 . . . 4 ((𝜑𝑥𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
54ralrimiva 3132 . . 3 (𝜑 → ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
6 ismgmid.b . . . 4 𝐵 = (Base‘𝐺)
7 ismgmid.o . . . 4 0 = (0g𝐺)
8 ismgmid.p . . . 4 + = (+g𝐺)
9 oveq1 7412 . . . . . . . 8 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
109eqeq1d 2737 . . . . . . 7 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
1110ovanraleqv 7429 . . . . . 6 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
1211rspcev 3601 . . . . 5 ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
131, 5, 12syl2anc 584 . . . 4 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
146, 7, 8, 13ismgmid 18643 . . 3 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
151, 5, 14mpbi2and 712 . 2 (𝜑0 = 𝑈)
1615eqcomd 2741 1 (𝜑𝑈 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455
This theorem is referenced by:  lidrididd  18648  grpidd  18649  submnd0  18741  xpsmnd0  18756  mnd1id  18758  frmd0  18838  efmndid  18866  pwmndid  18914  mhmid  19046  cnaddid  19851  ringidss  20237  xpsring1d  20293  xrs10  21373  rloccring  33265  idlsrg0g  33521
  Copyright terms: Public domain W3C validator