MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmid2 Structured version   Visualization version   GIF version

Theorem ismgmid2 18267
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
ismgmid2.u (𝜑𝑈𝐵)
ismgmid2.l ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
ismgmid2.r ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
Assertion
Ref Expression
ismgmid2 (𝜑𝑈 = 0 )
Distinct variable groups:   𝑥, +   𝑥, 0   𝑥,𝐵   𝑥,𝐺   𝑥,𝑈   𝜑,𝑥

Proof of Theorem ismgmid2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3 (𝜑𝑈𝐵)
2 ismgmid2.l . . . . 5 ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
3 ismgmid2.r . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
42, 3jca 511 . . . 4 ((𝜑𝑥𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
54ralrimiva 3107 . . 3 (𝜑 → ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
6 ismgmid.b . . . 4 𝐵 = (Base‘𝐺)
7 ismgmid.o . . . 4 0 = (0g𝐺)
8 ismgmid.p . . . 4 + = (+g𝐺)
9 oveq1 7262 . . . . . . . 8 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
109eqeq1d 2740 . . . . . . 7 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
1110ovanraleqv 7279 . . . . . 6 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
1211rspcev 3552 . . . . 5 ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
131, 5, 12syl2anc 583 . . . 4 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
146, 7, 8, 13ismgmid 18264 . . 3 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
151, 5, 14mpbi2and 708 . 2 (𝜑0 = 𝑈)
1615eqcomd 2744 1 (𝜑𝑈 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069
This theorem is referenced by:  lidrididd  18269  grpidd  18270  submnd0  18329  mnd1id  18342  frmd0  18414  efmndid  18442  pwmndid  18490  mhmid  18611  cnaddid  19386  ringidss  19731  xrs10  20549  idlsrg0g  31553
  Copyright terms: Public domain W3C validator