| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismgmid2 | Structured version Visualization version GIF version | ||
| Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
| ismgmid.o | ⊢ 0 = (0g‘𝐺) |
| ismgmid.p | ⊢ + = (+g‘𝐺) |
| ismgmid2.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| ismgmid2.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) |
| ismgmid2.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) |
| Ref | Expression |
|---|---|
| ismgmid2 | ⊢ (𝜑 → 𝑈 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
| 2 | ismgmid2.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) | |
| 3 | ismgmid2.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) | |
| 4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
| 5 | 4 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
| 6 | ismgmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | ismgmid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 8 | ismgmid.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 9 | oveq1 7412 | . . . . . . . 8 ⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) | |
| 10 | 9 | eqeq1d 2737 | . . . . . . 7 ⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
| 11 | 10 | ovanraleqv 7429 | . . . . . 6 ⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
| 12 | 11 | rspcev 3601 | . . . . 5 ⊢ ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| 13 | 1, 5, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| 14 | 6, 7, 8, 13 | ismgmid 18643 | . . 3 ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |
| 15 | 1, 5, 14 | mpbi2and 712 | . 2 ⊢ (𝜑 → 0 = 𝑈) |
| 16 | 15 | eqcomd 2741 | 1 ⊢ (𝜑 → 𝑈 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 |
| This theorem is referenced by: lidrididd 18648 grpidd 18649 submnd0 18741 xpsmnd0 18756 mnd1id 18758 frmd0 18838 efmndid 18866 pwmndid 18914 mhmid 19046 cnaddid 19851 ringidss 20237 xpsring1d 20293 xrs10 21373 rloccring 33265 idlsrg0g 33521 |
| Copyright terms: Public domain | W3C validator |