Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindepsnlininds Structured version   Visualization version   GIF version

Theorem lindepsnlininds 48376
Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.)
Assertion
Ref Expression
lindepsnlininds ((𝑆𝑉𝑀𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))

Proof of Theorem lindepsnlininds
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 5124 . . 3 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑠 linIndS 𝑚𝑆 linIndS 𝑀))
21notbid 318 . 2 ((𝑠 = 𝑆𝑚 = 𝑀) → (¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀))
3 df-lindeps 48368 . 2 linDepS = {⟨𝑠, 𝑚⟩ ∣ ¬ 𝑠 linIndS 𝑚}
42, 3brabga 5509 1 ((𝑆𝑉𝑀𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119   linIndS clininds 48364   linDepS clindeps 48365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-lindeps 48368
This theorem is referenced by:  islindeps  48377  islininds2  48408
  Copyright terms: Public domain W3C validator