![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindepsnlininds | Structured version Visualization version GIF version |
Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
Ref | Expression |
---|---|
lindepsnlininds | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 4891 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (𝑠 linIndS 𝑚 ↔ 𝑆 linIndS 𝑀)) | |
2 | 1 | notbid 310 | . 2 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀)) |
3 | df-lindeps 43248 | . 2 ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | |
4 | 2, 3 | brabga 5226 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 linIndS clininds 43244 linDepS clindeps 43245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-lindeps 43248 |
This theorem is referenced by: islindeps 43257 islininds2 43288 |
Copyright terms: Public domain | W3C validator |