![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindepsnlininds | Structured version Visualization version GIF version |
Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
Ref | Expression |
---|---|
lindepsnlininds | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 5153 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (𝑠 linIndS 𝑚 ↔ 𝑆 linIndS 𝑀)) | |
2 | 1 | notbid 317 | . 2 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀)) |
3 | df-lindeps 47624 | . 2 ⊢ linDepS = {⟨𝑠, 𝑚⟩ ∣ ¬ 𝑠 linIndS 𝑚} | |
4 | 2, 3 | brabga 5535 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5148 linIndS clininds 47620 linDepS clindeps 47621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-lindeps 47624 |
This theorem is referenced by: islindeps 47633 islininds2 47664 |
Copyright terms: Public domain | W3C validator |