Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindepsnlininds | Structured version Visualization version GIF version |
Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
Ref | Expression |
---|---|
lindepsnlininds | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 5075 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (𝑠 linIndS 𝑚 ↔ 𝑆 linIndS 𝑀)) | |
2 | 1 | notbid 317 | . 2 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀)) |
3 | df-lindeps 45673 | . 2 ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | |
4 | 2, 3 | brabga 5440 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 linIndS clininds 45669 linDepS clindeps 45670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-lindeps 45673 |
This theorem is referenced by: islindeps 45682 islininds2 45713 |
Copyright terms: Public domain | W3C validator |