Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindepsnlininds | Structured version Visualization version GIF version |
Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
Ref | Expression |
---|---|
lindepsnlininds | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 5079 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (𝑠 linIndS 𝑚 ↔ 𝑆 linIndS 𝑀)) | |
2 | 1 | notbid 318 | . 2 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀)) |
3 | df-lindeps 45785 | . 2 ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | |
4 | 2, 3 | brabga 5447 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 linIndS clininds 45781 linDepS clindeps 45782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-lindeps 45785 |
This theorem is referenced by: islindeps 45794 islininds2 45825 |
Copyright terms: Public domain | W3C validator |