| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindepsnlininds | Structured version Visualization version GIF version | ||
| Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
| Ref | Expression |
|---|---|
| lindepsnlininds | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 5094 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (𝑠 linIndS 𝑚 ↔ 𝑆 linIndS 𝑀)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ ((𝑠 = 𝑆 ∧ 𝑚 = 𝑀) → (¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀)) |
| 3 | df-lindeps 48544 | . 2 ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | |
| 4 | 2, 3 | brabga 5472 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 linIndS clininds 48540 linDepS clindeps 48541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-lindeps 48544 |
| This theorem is referenced by: islindeps 48553 islininds2 48584 |
| Copyright terms: Public domain | W3C validator |