Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | breq2 5078 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
3 | 1, 2 | sylan9bb 510 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: breq12i 5083 breq12d 5087 breqan12d 5090 rbropapd 5477 posn 5672 dfrel4 6094 dfpo2 6199 isopolem 7216 poxp 7969 soxp 7970 fnse 7974 ecopover 8610 canth2g 8918 ttrclss 9478 ttrclselem2 9484 infxpen 9770 sornom 10033 dcomex 10203 zorn2lem6 10257 brdom6disj 10288 fpwwe2 10399 rankcf 10533 ltresr 10896 ltxrlt 11045 wloglei 11507 ltxr 12851 xrltnr 12855 xrltnsym 12871 xrlttri 12873 xrlttr 12874 brfi1uzind 14212 brfi1indALT 14214 f1olecpbl 17238 isfull 17626 isfth 17630 prslem 18016 pslem 18290 dirtr 18320 xrsdsval 20642 dvcvx 25184 2sqmo 26585 2sqreultblem 26596 2sqreunnltblem 26599 2sqreuopb 26616 axcontlem9 27340 isrusgr 27928 wlk2f 27997 istrlson 28075 upgrwlkdvspth 28107 ispthson 28110 isspthson 28111 crctcshwlk 28187 crctcsh 28189 2pthon3v 28308 umgr2wlk 28314 0pthonv 28493 1pthon2v 28517 uhgr3cyclex 28546 brfinext 31728 mclsppslem 33545 fununiq 33743 poxp2 33790 poxp3 33796 slerec 34013 elfix2 34206 poimirlem10 35787 poimirlem11 35788 factwoffsmonot 40163 dvdsexpnn0 40341 monotoddzzfi 40764 or2expropbi 44528 dfatcolem 44747 sprsymrelfolem2 44945 poprelb 44976 lindepsnlininds 45793 catprslem 46291 |
Copyright terms: Public domain | W3C validator |