Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | breq2 5074 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: breq12i 5079 breq12d 5083 breqan12d 5086 rbropapd 5468 posn 5663 dfrel4 6083 dfpo2 6188 isopolem 7196 poxp 7940 soxp 7941 fnse 7945 ecopover 8568 canth2g 8867 infxpen 9701 sornom 9964 dcomex 10134 zorn2lem6 10188 brdom6disj 10219 fpwwe2 10330 rankcf 10464 ltresr 10827 ltxrlt 10976 wloglei 11437 ltxr 12780 xrltnr 12784 xrltnsym 12800 xrlttri 12802 xrlttr 12803 brfi1uzind 14140 brfi1indALT 14142 f1olecpbl 17155 isfull 17542 isfth 17546 prslem 17931 pslem 18205 dirtr 18235 xrsdsval 20554 dvcvx 25089 2sqmo 26490 2sqreultblem 26501 2sqreunnltblem 26504 2sqreuopb 26521 axcontlem9 27243 isrusgr 27831 wlk2f 27899 istrlson 27976 upgrwlkdvspth 28008 ispthson 28011 isspthson 28012 crctcshwlk 28088 crctcsh 28090 2pthon3v 28209 umgr2wlk 28215 0pthonv 28394 1pthon2v 28418 uhgr3cyclex 28447 brfinext 31630 mclsppslem 33445 fununiq 33649 ttrclss 33706 ttrclselem2 33712 poxp2 33717 poxp3 33723 slerec 33940 elfix2 34133 poimirlem10 35714 poimirlem11 35715 factwoffsmonot 40091 dvdsexpnn0 40262 monotoddzzfi 40680 or2expropbi 44415 dfatcolem 44634 sprsymrelfolem2 44833 poprelb 44864 lindepsnlininds 45681 catprslem 46179 |
Copyright terms: Public domain | W3C validator |