![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5150 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | breq2 5151 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 |
This theorem is referenced by: breq12i 5156 breq12d 5160 breqan12d 5163 rbropapd 5573 posn 5773 dfrel4 6212 dfpo2 6317 isopolem 7364 poxp 8151 soxp 8152 fnse 8156 poxp2 8166 poxp3 8173 ecopover 8859 canth2g 9169 ttrclss 9757 ttrclselem2 9763 infxpen 10051 sornom 10314 dcomex 10484 zorn2lem6 10538 brdom6disj 10569 fpwwe2 10680 rankcf 10814 ltresr 11177 ltxrlt 11328 wloglei 11792 ltxr 13154 xrltnr 13158 xrltnsym 13175 xrlttri 13177 xrlttr 13178 brfi1uzind 14543 brfi1indALT 14545 f1olecpbl 17573 isfull 17963 isfth 17967 prslem 18354 pslem 18629 dirtr 18659 xrsdsval 21445 dvcvx 26073 2sqmo 27495 2sqreultblem 27506 2sqreunnltblem 27509 2sqreuopb 27526 ssltsn 27851 slerec 27878 addsproplem2 28017 negsproplem2 28075 nohalf 28421 recut 28442 0reno 28443 axcontlem9 29001 isrusgr 29593 wlk2f 29662 istrlson 29739 upgrwlkdvspth 29771 ispthson 29774 isspthson 29775 crctcshwlk 29851 crctcsh 29853 2pthon3v 29972 umgr2wlk 29978 0pthonv 30157 1pthon2v 30181 uhgr3cyclex 30210 brfinext 33680 fldext2chn 33733 mclsppslem 35567 fununiq 35749 elfix2 35885 poimirlem10 37616 poimirlem11 37617 factwoffsmonot 42223 dvdsexpnn0 42347 monotoddzzfi 42930 or2expropbi 46983 dfatcolem 47204 sprsymrelfolem2 47417 poprelb 47448 lindepsnlininds 48297 catprslem 48798 |
Copyright terms: Public domain | W3C validator |