| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5122 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | breq2 5123 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: breq12i 5128 breq12d 5132 breqan12d 5135 rbropapd 5539 posn 5740 dfrel4 6180 dfpo2 6285 isopolem 7338 poxp 8127 soxp 8128 fnse 8132 poxp2 8142 poxp3 8149 ecopover 8835 canth2g 9145 ttrclss 9734 ttrclselem2 9740 infxpen 10028 sornom 10291 dcomex 10461 zorn2lem6 10515 brdom6disj 10546 fpwwe2 10657 rankcf 10791 ltresr 11154 ltxrlt 11305 wloglei 11769 ltxr 13131 xrltnr 13135 xrltnsym 13153 xrlttri 13155 xrlttr 13156 brfi1uzind 14526 brfi1indALT 14528 f1olecpbl 17541 isfull 17925 isfth 17929 prslem 18309 pslem 18582 dirtr 18612 xrsdsval 21378 dvcvx 25977 2sqmo 27400 2sqreultblem 27411 2sqreunnltblem 27414 2sqreuopb 27431 ssltsn 27756 slerec 27783 addsproplem2 27929 negsproplem2 27987 recut 28399 0reno 28400 axcontlem9 28951 isrusgr 29541 wlk2f 29610 istrlson 29687 upgrwlkdvspth 29721 ispthson 29724 isspthson 29725 crctcshwlk 29804 crctcsh 29806 2pthon3v 29925 umgr2wlk 29931 0pthonv 30110 1pthon2v 30134 uhgr3cyclex 30163 brfinext 33694 mclsppslem 35605 fununiq 35786 elfix2 35922 poimirlem10 37654 poimirlem11 37655 factwoffsmonot 42255 dvdsexpnn0 42383 monotoddzzfi 42966 or2expropbi 47063 dfatcolem 47284 sprsymrelfolem2 47507 poprelb 47538 cycldlenngric 47941 gpgprismgr4cyclex 48106 lindepsnlininds 48428 catprslem 48985 |
| Copyright terms: Public domain | W3C validator |