| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | breq2 5096 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: breq12i 5101 breq12d 5105 breqan12d 5108 rbropapd 5505 posn 5705 dfrel4 6140 dfpo2 6244 isopolem 7282 poxp 8061 soxp 8062 fnse 8066 poxp2 8076 poxp3 8083 ecopover 8748 canth2g 9048 ttrclss 9616 ttrclselem2 9622 infxpen 9908 sornom 10171 dcomex 10341 zorn2lem6 10395 brdom6disj 10426 fpwwe2 10537 rankcf 10671 ltresr 11034 ltxrlt 11186 wloglei 11652 ltxr 13017 xrltnr 13021 xrltnsym 13039 xrlttri 13041 xrlttr 13042 brfi1uzind 14415 brfi1indALT 14417 f1olecpbl 17431 isfull 17819 isfth 17823 prslem 18203 pslem 18478 dirtr 18508 xrsdsval 21317 dvcvx 25923 2sqmo 27346 2sqreultblem 27357 2sqreunnltblem 27360 2sqreuopb 27377 ssltsn 27703 slerec 27730 addsproplem2 27882 negsproplem2 27940 recut 28365 0reno 28366 axcontlem9 28917 isrusgr 29507 wlk2f 29575 istrlson 29650 upgrwlkdvspth 29684 ispthson 29687 isspthson 29688 crctcshwlk 29767 crctcsh 29769 2pthon3v 29888 umgr2wlk 29894 0pthonv 30073 1pthon2v 30097 uhgr3cyclex 30126 brfinext 33625 finextfldext 33637 bralgext 33670 mclsppslem 35566 fununiq 35752 elfix2 35888 poimirlem10 37620 poimirlem11 37621 dvdsexpnn0 42317 monotoddzzfi 42925 or2expropbi 47028 dfatcolem 47249 sprsymrelfolem2 47487 poprelb 47518 cycldlenngric 47922 gpgprismgr4cyclex 48101 lgricngricex 48123 lindepsnlininds 48447 catprslem 49005 |
| Copyright terms: Public domain | W3C validator |