![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | breq2 5170 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: breq12i 5175 breq12d 5179 breqan12d 5182 rbropapd 5583 posn 5785 dfrel4 6222 dfpo2 6327 isopolem 7381 poxp 8169 soxp 8170 fnse 8174 poxp2 8184 poxp3 8191 ecopover 8879 canth2g 9197 ttrclss 9789 ttrclselem2 9795 infxpen 10083 sornom 10346 dcomex 10516 zorn2lem6 10570 brdom6disj 10601 fpwwe2 10712 rankcf 10846 ltresr 11209 ltxrlt 11360 wloglei 11822 ltxr 13178 xrltnr 13182 xrltnsym 13199 xrlttri 13201 xrlttr 13202 brfi1uzind 14557 brfi1indALT 14559 f1olecpbl 17587 isfull 17977 isfth 17981 prslem 18368 pslem 18642 dirtr 18672 xrsdsval 21451 dvcvx 26079 2sqmo 27499 2sqreultblem 27510 2sqreunnltblem 27513 2sqreuopb 27530 ssltsn 27855 slerec 27882 addsproplem2 28021 negsproplem2 28079 nohalf 28425 recut 28446 0reno 28447 axcontlem9 29005 isrusgr 29597 wlk2f 29666 istrlson 29743 upgrwlkdvspth 29775 ispthson 29778 isspthson 29779 crctcshwlk 29855 crctcsh 29857 2pthon3v 29976 umgr2wlk 29982 0pthonv 30161 1pthon2v 30185 uhgr3cyclex 30214 brfinext 33666 fldext2chn 33719 mclsppslem 35551 fununiq 35732 elfix2 35868 poimirlem10 37590 poimirlem11 37591 factwoffsmonot 42199 dvdsexpnn0 42321 monotoddzzfi 42899 or2expropbi 46949 dfatcolem 47170 sprsymrelfolem2 47367 poprelb 47398 lindepsnlininds 48181 catprslem 48677 |
Copyright terms: Public domain | W3C validator |