| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5110 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | breq2 5111 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: breq12i 5116 breq12d 5120 breqan12d 5123 rbropapd 5524 posn 5724 dfrel4 6164 dfpo2 6269 isopolem 7320 poxp 8107 soxp 8108 fnse 8112 poxp2 8122 poxp3 8129 ecopover 8794 canth2g 9095 ttrclss 9673 ttrclselem2 9679 infxpen 9967 sornom 10230 dcomex 10400 zorn2lem6 10454 brdom6disj 10485 fpwwe2 10596 rankcf 10730 ltresr 11093 ltxrlt 11244 wloglei 11710 ltxr 13075 xrltnr 13079 xrltnsym 13097 xrlttri 13099 xrlttr 13100 brfi1uzind 14473 brfi1indALT 14475 f1olecpbl 17490 isfull 17874 isfth 17878 prslem 18258 pslem 18531 dirtr 18561 xrsdsval 21327 dvcvx 25925 2sqmo 27348 2sqreultblem 27359 2sqreunnltblem 27362 2sqreuopb 27379 ssltsn 27704 slerec 27731 addsproplem2 27877 negsproplem2 27935 recut 28347 0reno 28348 axcontlem9 28899 isrusgr 29489 wlk2f 29558 istrlson 29635 upgrwlkdvspth 29669 ispthson 29672 isspthson 29673 crctcshwlk 29752 crctcsh 29754 2pthon3v 29873 umgr2wlk 29879 0pthonv 30058 1pthon2v 30082 uhgr3cyclex 30111 brfinext 33648 mclsppslem 35570 fununiq 35756 elfix2 35892 poimirlem10 37624 poimirlem11 37625 dvdsexpnn0 42322 monotoddzzfi 42931 or2expropbi 47035 dfatcolem 47256 sprsymrelfolem2 47494 poprelb 47525 cycldlenngric 47928 gpgprismgr4cyclex 48097 lgricngricex 48119 lindepsnlininds 48441 catprslem 48999 |
| Copyright terms: Public domain | W3C validator |