| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5113 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | breq2 5114 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: breq12i 5119 breq12d 5123 breqan12d 5126 rbropapd 5527 posn 5727 dfrel4 6167 dfpo2 6272 isopolem 7323 poxp 8110 soxp 8111 fnse 8115 poxp2 8125 poxp3 8132 ecopover 8797 canth2g 9101 ttrclss 9680 ttrclselem2 9686 infxpen 9974 sornom 10237 dcomex 10407 zorn2lem6 10461 brdom6disj 10492 fpwwe2 10603 rankcf 10737 ltresr 11100 ltxrlt 11251 wloglei 11717 ltxr 13082 xrltnr 13086 xrltnsym 13104 xrlttri 13106 xrlttr 13107 brfi1uzind 14480 brfi1indALT 14482 f1olecpbl 17497 isfull 17881 isfth 17885 prslem 18265 pslem 18538 dirtr 18568 xrsdsval 21334 dvcvx 25932 2sqmo 27355 2sqreultblem 27366 2sqreunnltblem 27369 2sqreuopb 27386 ssltsn 27711 slerec 27738 addsproplem2 27884 negsproplem2 27942 recut 28354 0reno 28355 axcontlem9 28906 isrusgr 29496 wlk2f 29565 istrlson 29642 upgrwlkdvspth 29676 ispthson 29679 isspthson 29680 crctcshwlk 29759 crctcsh 29761 2pthon3v 29880 umgr2wlk 29886 0pthonv 30065 1pthon2v 30089 uhgr3cyclex 30118 brfinext 33655 mclsppslem 35577 fununiq 35763 elfix2 35899 poimirlem10 37631 poimirlem11 37632 dvdsexpnn0 42329 monotoddzzfi 42938 or2expropbi 47039 dfatcolem 47260 sprsymrelfolem2 47498 poprelb 47529 cycldlenngric 47932 gpgprismgr4cyclex 48101 lgricngricex 48123 lindepsnlininds 48445 catprslem 49003 |
| Copyright terms: Public domain | W3C validator |