| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5105 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | breq2 5106 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: breq12i 5111 breq12d 5115 breqan12d 5118 rbropapd 5517 posn 5717 dfrel4 6152 dfpo2 6257 isopolem 7302 poxp 8084 soxp 8085 fnse 8089 poxp2 8099 poxp3 8106 ecopover 8771 canth2g 9072 ttrclss 9649 ttrclselem2 9655 infxpen 9943 sornom 10206 dcomex 10376 zorn2lem6 10430 brdom6disj 10461 fpwwe2 10572 rankcf 10706 ltresr 11069 ltxrlt 11220 wloglei 11686 ltxr 13051 xrltnr 13055 xrltnsym 13073 xrlttri 13075 xrlttr 13076 brfi1uzind 14449 brfi1indALT 14451 f1olecpbl 17466 isfull 17854 isfth 17858 prslem 18238 pslem 18513 dirtr 18543 xrsdsval 21352 dvcvx 25958 2sqmo 27381 2sqreultblem 27392 2sqreunnltblem 27395 2sqreuopb 27412 ssltsn 27738 slerec 27765 addsproplem2 27917 negsproplem2 27975 recut 28400 0reno 28401 axcontlem9 28952 isrusgr 29542 wlk2f 29610 istrlson 29685 upgrwlkdvspth 29719 ispthson 29722 isspthson 29723 crctcshwlk 29802 crctcsh 29804 2pthon3v 29923 umgr2wlk 29929 0pthonv 30108 1pthon2v 30132 uhgr3cyclex 30161 brfinext 33641 mclsppslem 35563 fununiq 35749 elfix2 35885 poimirlem10 37617 poimirlem11 37618 dvdsexpnn0 42315 monotoddzzfi 42924 or2expropbi 47028 dfatcolem 47249 sprsymrelfolem2 47487 poprelb 47518 cycldlenngric 47921 gpgprismgr4cyclex 48090 lgricngricex 48112 lindepsnlininds 48434 catprslem 48992 |
| Copyright terms: Public domain | W3C validator |