| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | breq2 5093 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: breq12i 5098 breq12d 5102 breqan12d 5105 rbropapd 5500 posn 5700 dfrel4 6138 dfpo2 6243 isopolem 7279 poxp 8058 soxp 8059 fnse 8063 poxp2 8073 poxp3 8080 ecopover 8745 canth2g 9044 ttrclss 9610 ttrclselem2 9616 infxpen 9905 sornom 10168 dcomex 10338 zorn2lem6 10392 brdom6disj 10423 fpwwe2 10534 rankcf 10668 ltresr 11031 ltxrlt 11183 wloglei 11649 ltxr 13014 xrltnr 13018 xrltnsym 13036 xrlttri 13038 xrlttr 13039 brfi1uzind 14415 brfi1indALT 14417 f1olecpbl 17431 isfull 17819 isfth 17823 prslem 18203 pslem 18478 dirtr 18508 xrsdsval 21347 dvcvx 25952 2sqmo 27375 2sqreultblem 27386 2sqreunnltblem 27389 2sqreuopb 27406 slerec 27760 addsproplem2 27913 negsproplem2 27971 recut 28398 0reno 28399 axcontlem9 28950 isrusgr 29540 wlk2f 29608 istrlson 29683 upgrwlkdvspth 29717 ispthson 29720 isspthson 29721 crctcshwlk 29800 crctcsh 29802 2pthon3v 29921 umgr2wlk 29927 0pthonv 30109 1pthon2v 30133 uhgr3cyclex 30162 brfinext 33665 finextfldext 33677 bralgext 33710 mclsppslem 35627 fununiq 35813 elfix2 35946 poimirlem10 37669 poimirlem11 37670 dvdsexpnn0 42426 monotoddzzfi 43034 or2expropbi 47133 dfatcolem 47354 sprsymrelfolem2 47592 poprelb 47623 cycldlenngric 48027 gpgprismgr4cyclex 48206 lgricngricex 48228 lindepsnlininds 48552 catprslem 49110 |
| Copyright terms: Public domain | W3C validator |