![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindscl | Structured version Visualization version GIF version |
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
linindscl | ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2771 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2771 | . . 3 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
4 | eqid 2771 | . . 3 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
5 | eqid 2771 | . . 3 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
6 | 1, 2, 3, 4, 5 | linindsi 43903 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀))))) |
7 | 6 | simpld 487 | 1 ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3081 𝒫 cpw 4416 class class class wbr 4925 ‘cfv 6185 (class class class)co 6974 ↑𝑚 cmap 8204 finSupp cfsupp 8626 Basecbs 16337 Scalarcsca 16422 0gc0g 16567 linC clinc 43860 linIndS clininds 43896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 df-iota 6149 df-fv 6193 df-ov 6977 df-lininds 43898 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |