Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindscl Structured version   Visualization version   GIF version

Theorem linindscl 47132
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
linindscl (𝑆 linIndS 𝑀 β†’ 𝑆 ∈ 𝒫 (Baseβ€˜π‘€))

Proof of Theorem linindscl
Dummy variables π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2733 . . 3 (0gβ€˜π‘€) = (0gβ€˜π‘€)
3 eqid 2733 . . 3 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
4 eqid 2733 . . 3 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
5 eqid 2733 . . 3 (0gβ€˜(Scalarβ€˜π‘€)) = (0gβ€˜(Scalarβ€˜π‘€))
61, 2, 3, 4, 5linindsi 47128 . 2 (𝑆 linIndS 𝑀 β†’ (𝑆 ∈ 𝒫 (Baseβ€˜π‘€) ∧ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑆)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘€)))))
76simpld 496 1 (𝑆 linIndS 𝑀 β†’ 𝑆 ∈ 𝒫 (Baseβ€˜π‘€))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  π’« cpw 4603   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820   finSupp cfsupp 9361  Basecbs 17144  Scalarcsca 17200  0gc0g 17385   linC clinc 47085   linIndS clininds 47121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-iota 6496  df-fv 6552  df-ov 7412  df-lininds 47123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator