| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linindscl | Structured version Visualization version GIF version | ||
| Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
| Ref | Expression |
|---|---|
| linindscl | ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 3 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 5 | eqid 2729 | . . 3 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
| 6 | 1, 2, 3, 4, 5 | linindsi 48436 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀))))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4563 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 linC clinc 48393 linIndS clininds 48429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-iota 6464 df-fv 6519 df-ov 7390 df-lininds 48431 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |