![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindscl | Structured version Visualization version GIF version |
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
linindscl | ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2740 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2740 | . . 3 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
4 | eqid 2740 | . . 3 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
5 | eqid 2740 | . . 3 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
6 | 1, 2, 3, 4, 5 | linindsi 48165 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀))))) |
7 | 6 | simpld 494 | 1 ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 𝒫 cpw 4622 class class class wbr 5166 ‘cfv 6568 (class class class)co 7443 ↑m cmap 8878 finSupp cfsupp 9425 Basecbs 17252 Scalarcsca 17308 0gc0g 17493 linC clinc 48122 linIndS clininds 48158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5701 df-rel 5702 df-iota 6520 df-fv 6576 df-ov 7446 df-lininds 48160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |