Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindscl Structured version   Visualization version   GIF version

Theorem linindscl 45792
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
linindscl (𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))

Proof of Theorem linindscl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . 3 (0g𝑀) = (0g𝑀)
3 eqid 2738 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2738 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
5 eqid 2738 . . 3 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
61, 2, 3, 4, 5linindsi 45788 . 2 (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
76simpld 495 1 (𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  𝒫 cpw 4533   class class class wbr 5074  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  Basecbs 16912  Scalarcsca 16965  0gc0g 17150   linC clinc 45745   linIndS clininds 45781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-iota 6391  df-fv 6441  df-ov 7278  df-lininds 45783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator