![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindscl | Structured version Visualization version GIF version |
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
linindscl | β’ (π linIndS π β π β π« (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2733 | . . 3 β’ (0gβπ) = (0gβπ) | |
3 | eqid 2733 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
4 | eqid 2733 | . . 3 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
5 | eqid 2733 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
6 | 1, 2, 3, 4, 5 | linindsi 47128 | . 2 β’ (π linIndS π β (π β π« (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)((π finSupp (0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ))))) |
7 | 6 | simpld 496 | 1 β’ (π linIndS π β π β π« (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 π« cpw 4603 class class class wbr 5149 βcfv 6544 (class class class)co 7409 βm cmap 8820 finSupp cfsupp 9361 Basecbs 17144 Scalarcsca 17200 0gc0g 17385 linC clinc 47085 linIndS clininds 47121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-iota 6496 df-fv 6552 df-ov 7412 df-lininds 47123 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |