| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linindscl | Structured version Visualization version GIF version | ||
| Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
| Ref | Expression |
|---|---|
| linindscl | ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2734 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 3 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 4 | eqid 2734 | . . 3 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 5 | eqid 2734 | . . 3 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
| 6 | 1, 2, 3, 4, 5 | linindsi 48309 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀))))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 𝒫 cpw 4573 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 ↑m cmap 8834 finSupp cfsupp 9367 Basecbs 17213 Scalarcsca 17259 0gc0g 17438 linC clinc 48266 linIndS clininds 48302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-xp 5657 df-rel 5658 df-iota 6480 df-fv 6535 df-ov 7402 df-lininds 48304 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |