Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindscl Structured version   Visualization version   GIF version

Theorem linindscl 48489
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
linindscl (𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))

Proof of Theorem linindscl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2731 . . 3 (0g𝑀) = (0g𝑀)
3 eqid 2731 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2731 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
5 eqid 2731 . . 3 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
61, 2, 3, 4, 5linindsi 48485 . 2 (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
76simpld 494 1 (𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  𝒫 cpw 4550   class class class wbr 5091  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245  Basecbs 17120  Scalarcsca 17164  0gc0g 17343   linC clinc 48442   linIndS clininds 48478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-iota 6437  df-fv 6489  df-ov 7349  df-lininds 48480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator