Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islininds2 Structured version   Visualization version   GIF version

Theorem islininds2 43113
Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islininds2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islininds2
StepHypRef Expression
1 lindepsnlininds 43081 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
21ancoms 452 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
323adant3 1166 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
43con2bid 346 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 ↔ ¬ 𝑆 linDepS 𝑀))
5 notnotb 307 . . . . . . . . . 10 (𝑓 finSupp 0 ↔ ¬ ¬ 𝑓 finSupp 0 )
6 nne 3003 . . . . . . . . . . 11 (¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠 ↔ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
76bicomi 216 . . . . . . . . . 10 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)
85, 7anbi12i 620 . . . . . . . . 9 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ (¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
9 pm4.56 1016 . . . . . . . . 9 ((¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
108, 9bitri 267 . . . . . . . 8 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1110rexbii 3251 . . . . . . 7 (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
12 rexnal 3203 . . . . . . 7 (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1311, 12bitri 267 . . . . . 6 (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1413rexbii 3251 . . . . 5 (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑠𝑆 ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
15 rexnal 3203 . . . . 5 (∃𝑠𝑆 ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1614, 15bitri 267 . . . 4 (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
17 islindeps2.b . . . . 5 𝐵 = (Base‘𝑀)
18 islindeps2.z . . . . 5 𝑍 = (0g𝑀)
19 islindeps2.r . . . . 5 𝑅 = (Scalar‘𝑀)
20 islindeps2.e . . . . 5 𝐸 = (Base‘𝑅)
21 islindeps2.0 . . . . 5 0 = (0g𝑅)
2217, 18, 19, 20, 21islindeps2 43112 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
2316, 22syl5bir 235 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (¬ ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) → 𝑆 linDepS 𝑀))
2423con1d 142 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (¬ 𝑆 linDepS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
254, 24sylbid 232 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  cdif 3795  𝒫 cpw 4378  {csn 4397   class class class wbr 4873  cfv 6123  (class class class)co 6905  𝑚 cmap 8122   finSupp cfsupp 8544  Basecbs 16222  Scalarcsca 16308  0gc0g 16453  LModclmod 19219  NzRingcnzr 19618   linC clinc 43033   linIndS clininds 43069   linDepS clindeps 43070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-oppr 18977  df-dvdsr 18995  df-unit 18996  df-invr 19026  df-lmod 19221  df-nzr 19619  df-linc 43035  df-lininds 43071  df-lindeps 43073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator