![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islininds2 | Structured version Visualization version GIF version |
Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islindeps2.b | ⊢ 𝐵 = (Base‘𝑀) |
islindeps2.z | ⊢ 𝑍 = (0g‘𝑀) |
islindeps2.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islindeps2.e | ⊢ 𝐸 = (Base‘𝑅) |
islindeps2.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
islininds2 | ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindepsnlininds 48297 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
4 | 3 | con2bid 354 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 ↔ ¬ 𝑆 linDepS 𝑀)) |
5 | notnotb 315 | . . . . . . . . . 10 ⊢ (𝑓 finSupp 0 ↔ ¬ ¬ 𝑓 finSupp 0 ) | |
6 | nne 2941 | . . . . . . . . . . 11 ⊢ (¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠 ↔ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) | |
7 | 6 | bicomi 224 | . . . . . . . . . 10 ⊢ ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) |
8 | 5, 7 | anbi12i 628 | . . . . . . . . 9 ⊢ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ (¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
9 | pm4.56 990 | . . . . . . . . 9 ⊢ ((¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) | |
10 | 8, 9 | bitri 275 | . . . . . . . 8 ⊢ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
11 | 10 | rexbii 3091 | . . . . . . 7 ⊢ (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
12 | rexnal 3097 | . . . . . . 7 ⊢ (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) | |
13 | 11, 12 | bitri 275 | . . . . . 6 ⊢ (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
14 | 13 | rexbii 3091 | . . . . 5 ⊢ (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑠 ∈ 𝑆 ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
15 | rexnal 3097 | . . . . 5 ⊢ (∃𝑠 ∈ 𝑆 ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) | |
16 | 14, 15 | bitri 275 | . . . 4 ⊢ (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
17 | islindeps2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
18 | islindeps2.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑀) | |
19 | islindeps2.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
20 | islindeps2.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
21 | islindeps2.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
22 | 17, 18, 19, 20, 21 | islindeps2 48328 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) |
23 | 16, 22 | biimtrrid 243 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (¬ ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) → 𝑆 linDepS 𝑀)) |
24 | 23 | con1d 145 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (¬ 𝑆 linDepS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) |
25 | 4, 24 | sylbid 240 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∖ cdif 3959 𝒫 cpw 4604 {csn 4630 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 finSupp cfsupp 9398 Basecbs 17244 Scalarcsca 17300 0gc0g 17485 NzRingcnzr 20528 LModclmod 20874 linC clinc 48249 linIndS clininds 48285 linDepS clindeps 48286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-0g 17487 df-gsum 17488 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-grp 18966 df-minusg 18967 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-nzr 20529 df-lmod 20876 df-linc 48251 df-lininds 48287 df-lindeps 48289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |