![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islininds2 | Structured version Visualization version GIF version |
Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islindeps2.b | ⊢ 𝐵 = (Base‘𝑀) |
islindeps2.z | ⊢ 𝑍 = (0g‘𝑀) |
islindeps2.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islindeps2.e | ⊢ 𝐸 = (Base‘𝑅) |
islindeps2.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
islininds2 | ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindepsnlininds 47297 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
4 | 3 | con2bid 354 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 ↔ ¬ 𝑆 linDepS 𝑀)) |
5 | notnotb 315 | . . . . . . . . . 10 ⊢ (𝑓 finSupp 0 ↔ ¬ ¬ 𝑓 finSupp 0 ) | |
6 | nne 2943 | . . . . . . . . . . 11 ⊢ (¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠 ↔ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) | |
7 | 6 | bicomi 223 | . . . . . . . . . 10 ⊢ ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) |
8 | 5, 7 | anbi12i 626 | . . . . . . . . 9 ⊢ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ (¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
9 | pm4.56 986 | . . . . . . . . 9 ⊢ ((¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) | |
10 | 8, 9 | bitri 275 | . . . . . . . 8 ⊢ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
11 | 10 | rexbii 3093 | . . . . . . 7 ⊢ (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
12 | rexnal 3099 | . . . . . . 7 ⊢ (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) | |
13 | 11, 12 | bitri 275 | . . . . . 6 ⊢ (∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
14 | 13 | rexbii 3093 | . . . . 5 ⊢ (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑠 ∈ 𝑆 ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
15 | rexnal 3099 | . . . . 5 ⊢ (∃𝑠 ∈ 𝑆 ¬ ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) | |
16 | 14, 15 | bitri 275 | . . . 4 ⊢ (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)) |
17 | islindeps2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
18 | islindeps2.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑀) | |
19 | islindeps2.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
20 | islindeps2.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
21 | islindeps2.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
22 | 17, 18, 19, 20, 21 | islindeps2 47328 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) |
23 | 16, 22 | biimtrrid 242 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (¬ ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) → 𝑆 linDepS 𝑀)) |
24 | 23 | con1d 145 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (¬ 𝑆 linDepS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) |
25 | 4, 24 | sylbid 239 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∖ cdif 3945 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 finSupp cfsupp 9367 Basecbs 17151 Scalarcsca 17207 0gc0g 17392 NzRingcnzr 20410 LModclmod 20702 linC clinc 47249 linIndS clininds 47285 linDepS clindeps 47286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-gsum 17395 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-nzr 20411 df-lmod 20704 df-linc 47251 df-lininds 47287 df-lindeps 47289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |