![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5167 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2836 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
6 | 5 | opelopabga 5552 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 |
This theorem is referenced by: braba 5556 brabg 5558 epelg 5600 brcog 5891 fmptco 7163 ofrfvalg 7722 isfsupp 9435 wemaplem1 9615 oemapval 9752 wemapwe 9766 fpwwe2lem2 10701 fpwwelem 10714 clim 15540 rlim 15541 vdwmc 17025 isstruct2 17196 brssc 17875 isfunc 17928 isfull 17977 isfth 17981 ipole 18604 eqgval 19217 frgpuplem 19814 dvdsr 20388 islindf 21855 ulmval 26441 hpgbr 28786 isausgr 29199 issubgr 29306 isrgr 29595 isrusgr 29597 istrlson 29743 upgrwlkdvspth 29775 ispthson 29778 isspthson 29779 erclwwlkeq 30050 erclwwlkneq 30099 hlimi 31220 isinftm 33161 brfldext 33660 brfinext 33666 fldext2chn 33719 metidv 33838 ismntoplly 33971 brae 34205 braew 34206 brfae 34212 satfbrsuc 35334 prv 35396 bj-epelg 37034 bj-ideqgALT 37124 bj-idreseq 37128 bj-idreseqb 37129 bj-ideqg1ALT 37131 brcoss 38387 brcoels 38391 brdmqss 38602 aks6d1c1p1 42064 climf 45543 climf2 45587 nelbr 47189 iscllaw 47912 iscomlaw 47913 isasslaw 47915 islininds 48175 lindepsnlininds 48181 |
Copyright terms: Public domain | W3C validator |