MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabga Structured version   Visualization version   GIF version

Theorem brabga 5553
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brabga.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabga ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem brabga
StepHypRef Expression
1 df-br 5167 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabga.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2836 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
41, 3bitri 275 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opelopabga.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
65opelopabga 5552 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
74, 6bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229
This theorem is referenced by:  braba  5556  brabg  5558  epelg  5600  brcog  5891  fmptco  7163  ofrfvalg  7722  isfsupp  9435  wemaplem1  9615  oemapval  9752  wemapwe  9766  fpwwe2lem2  10701  fpwwelem  10714  clim  15540  rlim  15541  vdwmc  17025  isstruct2  17196  brssc  17875  isfunc  17928  isfull  17977  isfth  17981  ipole  18604  eqgval  19217  frgpuplem  19814  dvdsr  20388  islindf  21855  ulmval  26441  hpgbr  28786  isausgr  29199  issubgr  29306  isrgr  29595  isrusgr  29597  istrlson  29743  upgrwlkdvspth  29775  ispthson  29778  isspthson  29779  erclwwlkeq  30050  erclwwlkneq  30099  hlimi  31220  isinftm  33161  brfldext  33660  brfinext  33666  fldext2chn  33719  metidv  33838  ismntoplly  33971  brae  34205  braew  34206  brfae  34212  satfbrsuc  35334  prv  35396  bj-epelg  37034  bj-ideqgALT  37124  bj-idreseq  37128  bj-idreseqb  37129  bj-ideqg1ALT  37131  brcoss  38387  brcoels  38391  brdmqss  38602  aks6d1c1p1  42064  climf  45543  climf2  45587  nelbr  47189  iscllaw  47912  iscomlaw  47913  isasslaw  47915  islininds  48175  lindepsnlininds  48181
  Copyright terms: Public domain W3C validator