| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5120 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2826 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5508 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 |
| This theorem is referenced by: braba 5512 brabg 5514 epelg 5554 brcog 5846 fmptco 7118 ofrfvalg 7677 isfsupp 9375 wemaplem1 9558 oemapval 9695 wemapwe 9709 fpwwe2lem2 10644 fpwwelem 10657 clim 15508 rlim 15509 vdwmc 16996 isstruct2 17166 brssc 17825 isfunc 17875 isfull 17923 isfth 17927 ipole 18542 eqgval 19158 frgpuplem 19751 dvdsr 20320 islindf 21770 ulmval 26339 hpgbr 28685 isausgr 29089 issubgr 29196 isrgr 29485 isrusgr 29487 istrlson 29633 upgrwlkdvspth 29667 ispthson 29670 isspthson 29671 erclwwlkeq 29945 erclwwlkneq 29994 hlimi 31115 isinftm 33125 brfldext 33633 brfinext 33640 fldext2chn 33708 constrextdg2lem 33728 metidv 33869 ismntoplly 34002 brae 34218 braew 34219 brfae 34225 satfbrsuc 35334 prv 35396 bj-epelg 37032 bj-ideqgALT 37122 bj-idreseq 37126 bj-idreseqb 37127 bj-ideqg1ALT 37129 brcoss 38395 brcoels 38399 brdmqss 38610 aks6d1c1p1 42066 climf 45599 climf2 45643 nelbr 47251 iscllaw 48112 iscomlaw 48113 isasslaw 48115 islininds 48370 lindepsnlininds 48376 |
| Copyright terms: Public domain | W3C validator |