| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5493 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 {copab 5169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 |
| This theorem is referenced by: braba 5497 brabg 5499 epelg 5539 brcog 5830 fmptco 7101 ofrfvalg 7661 isfsupp 9316 wemaplem1 9499 oemapval 9636 wemapwe 9650 fpwwe2lem2 10585 fpwwelem 10598 clim 15460 rlim 15461 vdwmc 16949 isstruct2 17119 brssc 17776 isfunc 17826 isfull 17874 isfth 17878 ipole 18493 eqgval 19109 frgpuplem 19702 dvdsr 20271 islindf 21721 ulmval 26289 hpgbr 28687 isausgr 29091 issubgr 29198 isrgr 29487 isrusgr 29489 istrlson 29635 upgrwlkdvspth 29669 ispthson 29672 isspthson 29673 erclwwlkeq 29947 erclwwlkneq 29996 hlimi 31117 isinftm 33135 brfldext 33641 brfinext 33648 fldext2chn 33718 constrextdg2lem 33738 metidv 33882 ismntoplly 34015 brae 34231 braew 34232 brfae 34238 satfbrsuc 35353 prv 35415 bj-epelg 37056 bj-ideqgALT 37146 bj-idreseq 37150 bj-idreseqb 37151 bj-ideqg1ALT 37153 brcoss 38422 brcoels 38426 brdmqss 38637 aks6d1c1p1 42095 climf 45620 climf2 45664 nelbr 47275 iscllaw 48177 iscomlaw 48178 isasslaw 48180 islininds 48435 lindepsnlininds 48441 |
| Copyright terms: Public domain | W3C validator |