| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2821 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5496 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 |
| This theorem is referenced by: braba 5500 brabg 5502 epelg 5542 brcog 5833 fmptco 7104 ofrfvalg 7664 isfsupp 9323 wemaplem1 9506 oemapval 9643 wemapwe 9657 fpwwe2lem2 10592 fpwwelem 10605 clim 15467 rlim 15468 vdwmc 16956 isstruct2 17126 brssc 17783 isfunc 17833 isfull 17881 isfth 17885 ipole 18500 eqgval 19116 frgpuplem 19709 dvdsr 20278 islindf 21728 ulmval 26296 hpgbr 28694 isausgr 29098 issubgr 29205 isrgr 29494 isrusgr 29496 istrlson 29642 upgrwlkdvspth 29676 ispthson 29679 isspthson 29680 erclwwlkeq 29954 erclwwlkneq 30003 hlimi 31124 isinftm 33142 brfldext 33648 brfinext 33655 fldext2chn 33725 constrextdg2lem 33745 metidv 33889 ismntoplly 34022 brae 34238 braew 34239 brfae 34245 satfbrsuc 35360 prv 35422 bj-epelg 37063 bj-ideqgALT 37153 bj-idreseq 37157 bj-idreseqb 37158 bj-ideqg1ALT 37160 brcoss 38429 brcoels 38433 brdmqss 38644 aks6d1c1p1 42102 climf 45627 climf2 45671 nelbr 47279 iscllaw 48181 iscomlaw 48182 isasslaw 48184 islininds 48439 lindepsnlininds 48445 |
| Copyright terms: Public domain | W3C validator |