| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5103 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5488 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 {copab 5164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 |
| This theorem is referenced by: braba 5492 brabg 5494 epelg 5532 brcog 5820 fmptco 7083 ofrfvalg 7641 isfsupp 9292 wemaplem1 9475 oemapval 9612 wemapwe 9626 fpwwe2lem2 10561 fpwwelem 10574 clim 15436 rlim 15437 vdwmc 16925 isstruct2 17095 brssc 17756 isfunc 17806 isfull 17854 isfth 17858 ipole 18475 eqgval 19091 frgpuplem 19686 dvdsr 20282 islindf 21754 ulmval 26322 hpgbr 28740 isausgr 29144 issubgr 29251 isrgr 29540 isrusgr 29542 istrlson 29685 upgrwlkdvspth 29719 ispthson 29722 isspthson 29723 erclwwlkeq 29997 erclwwlkneq 30046 hlimi 31167 isinftm 33150 brfldext 33634 brfinext 33641 fldext2chn 33711 constrextdg2lem 33731 metidv 33875 ismntoplly 34008 brae 34224 braew 34225 brfae 34231 satfbrsuc 35346 prv 35408 bj-epelg 37049 bj-ideqgALT 37139 bj-idreseq 37143 bj-idreseqb 37144 bj-ideqg1ALT 37146 brcoss 38415 brcoels 38419 brdmqss 38630 aks6d1c1p1 42088 climf 45613 climf2 45657 nelbr 47268 iscllaw 48170 iscomlaw 48171 isasslaw 48173 islininds 48428 lindepsnlininds 48434 |
| Copyright terms: Public domain | W3C validator |