| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2823 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5471 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 |
| This theorem is referenced by: braba 5475 brabg 5477 epelg 5515 brcog 5805 fmptco 7062 ofrfvalg 7618 isfsupp 9249 wemaplem1 9432 oemapval 9573 wemapwe 9587 fpwwe2lem2 10523 fpwwelem 10536 clim 15401 rlim 15402 vdwmc 16890 isstruct2 17060 brssc 17721 isfunc 17771 isfull 17819 isfth 17823 ipole 18440 eqgval 19089 frgpuplem 19684 dvdsr 20280 islindf 21749 ulmval 26316 hpgbr 28738 isausgr 29142 issubgr 29249 isrgr 29538 isrusgr 29540 istrlson 29683 upgrwlkdvspth 29717 ispthson 29720 isspthson 29721 erclwwlkeq 29998 erclwwlkneq 30047 hlimi 31168 isinftm 33150 brfldext 33658 brfinext 33665 finextfldext 33677 bralgext 33710 fldext2chn 33741 constrextdg2lem 33761 metidv 33905 ismntoplly 34038 brae 34254 braew 34255 brfae 34261 satfbrsuc 35410 prv 35472 bj-epelg 37112 bj-ideqgALT 37202 bj-idreseq 37206 bj-idreseqb 37207 bj-ideqg1ALT 37209 brsucmap 38478 brcoss 38532 brcoels 38536 brdmqss 38742 aks6d1c1p1 42199 climf 45721 climf2 45763 nelbr 47373 iscllaw 48288 iscomlaw 48289 isasslaw 48291 islininds 48546 lindepsnlininds 48552 |
| Copyright terms: Public domain | W3C validator |