![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
brabga.2 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
2 | brabga.2 | . . . 4 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
3 | 2 | eleq2i 2823 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
6 | 5 | opelopabga 5534 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)) |
7 | 4, 6 | bitrid 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⟨cop 4635 class class class wbr 5149 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 |
This theorem is referenced by: braba 5538 brabg 5540 epelg 5582 brcog 5867 fmptco 7130 ofrfvalg 7682 isfsupp 9369 wemaplem1 9545 oemapval 9682 wemapwe 9696 fpwwe2lem2 10631 fpwwelem 10644 clim 15444 rlim 15445 vdwmc 16917 isstruct2 17088 brssc 17767 isfunc 17820 isfull 17867 isfth 17871 ipole 18493 eqgval 19095 frgpuplem 19683 dvdsr 20255 islindf 21588 ulmval 26126 hpgbr 28276 isausgr 28689 issubgr 28793 isrgr 29081 isrusgr 29083 istrlson 29229 upgrwlkdvspth 29261 ispthson 29264 isspthson 29265 erclwwlkeq 29536 erclwwlkneq 29585 hlimi 30706 isinftm 32595 brfldext 33012 brfinext 33018 metidv 33168 ismntoplly 33301 brae 33535 braew 33536 brfae 33542 satfbrsuc 34653 prv 34715 bj-epelg 36254 bj-ideqgALT 36344 bj-idreseq 36348 bj-idreseqb 36349 bj-ideqg1ALT 36351 brcoss 37606 brcoels 37610 brdmqss 37821 climf 44638 climf2 44682 nelbr 46282 isomgr 46791 iscllaw 46867 iscomlaw 46868 isasslaw 46870 islininds 47216 lindepsnlininds 47222 |
Copyright terms: Public domain | W3C validator |