MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabga Structured version   Visualization version   GIF version

Theorem brabga 5535
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brabga.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabga ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem brabga
StepHypRef Expression
1 df-br 5150 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabga.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2823 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
41, 3bitri 274 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opelopabga.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
65opelopabga 5534 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
74, 6bitrid 282 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  cop 4635   class class class wbr 5149  {copab 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212
This theorem is referenced by:  braba  5538  brabg  5540  epelg  5582  brcog  5867  fmptco  7130  ofrfvalg  7682  isfsupp  9369  wemaplem1  9545  oemapval  9682  wemapwe  9696  fpwwe2lem2  10631  fpwwelem  10644  clim  15444  rlim  15445  vdwmc  16917  isstruct2  17088  brssc  17767  isfunc  17820  isfull  17867  isfth  17871  ipole  18493  eqgval  19095  frgpuplem  19683  dvdsr  20255  islindf  21588  ulmval  26126  hpgbr  28276  isausgr  28689  issubgr  28793  isrgr  29081  isrusgr  29083  istrlson  29229  upgrwlkdvspth  29261  ispthson  29264  isspthson  29265  erclwwlkeq  29536  erclwwlkneq  29585  hlimi  30706  isinftm  32595  brfldext  33012  brfinext  33018  metidv  33168  ismntoplly  33301  brae  33535  braew  33536  brfae  33542  satfbrsuc  34653  prv  34715  bj-epelg  36254  bj-ideqgALT  36344  bj-idreseq  36348  bj-idreseqb  36349  bj-ideqg1ALT  36351  brcoss  37606  brcoels  37610  brdmqss  37821  climf  44638  climf2  44682  nelbr  46282  isomgr  46791  iscllaw  46867  iscomlaw  46868  isasslaw  46870  islininds  47216  lindepsnlininds  47222
  Copyright terms: Public domain W3C validator