| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5093 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2820 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5476 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 {copab 5154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 |
| This theorem is referenced by: braba 5480 brabg 5482 epelg 5520 brcog 5809 fmptco 7063 ofrfvalg 7621 isfsupp 9255 wemaplem1 9438 oemapval 9579 wemapwe 9593 fpwwe2lem2 10526 fpwwelem 10539 clim 15401 rlim 15402 vdwmc 16890 isstruct2 17060 brssc 17721 isfunc 17771 isfull 17819 isfth 17823 ipole 18440 eqgval 19056 frgpuplem 19651 dvdsr 20247 islindf 21719 ulmval 26287 hpgbr 28705 isausgr 29109 issubgr 29216 isrgr 29505 isrusgr 29507 istrlson 29650 upgrwlkdvspth 29684 ispthson 29687 isspthson 29688 erclwwlkeq 29962 erclwwlkneq 30011 hlimi 31132 isinftm 33124 brfldext 33618 brfinext 33625 finextfldext 33637 bralgext 33670 fldext2chn 33701 constrextdg2lem 33721 metidv 33865 ismntoplly 33998 brae 34214 braew 34215 brfae 34221 satfbrsuc 35349 prv 35411 bj-epelg 37052 bj-ideqgALT 37142 bj-idreseq 37146 bj-idreseqb 37147 bj-ideqg1ALT 37149 brcoss 38418 brcoels 38422 brdmqss 38633 aks6d1c1p1 42090 climf 45613 climf2 45657 nelbr 47268 iscllaw 48183 iscomlaw 48184 isasslaw 48186 islininds 48441 lindepsnlininds 48447 |
| Copyright terms: Public domain | W3C validator |