![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2831 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
6 | 5 | opelopabga 5543 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 |
This theorem is referenced by: braba 5547 brabg 5549 epelg 5590 brcog 5880 fmptco 7149 ofrfvalg 7705 isfsupp 9403 wemaplem1 9584 oemapval 9721 wemapwe 9735 fpwwe2lem2 10670 fpwwelem 10683 clim 15527 rlim 15528 vdwmc 17012 isstruct2 17183 brssc 17862 isfunc 17915 isfull 17964 isfth 17968 ipole 18592 eqgval 19208 frgpuplem 19805 dvdsr 20379 islindf 21850 ulmval 26438 hpgbr 28783 isausgr 29196 issubgr 29303 isrgr 29592 isrusgr 29594 istrlson 29740 upgrwlkdvspth 29772 ispthson 29775 isspthson 29776 erclwwlkeq 30047 erclwwlkneq 30096 hlimi 31217 isinftm 33171 brfldext 33675 brfinext 33681 fldext2chn 33734 metidv 33853 ismntoplly 33988 brae 34222 braew 34223 brfae 34229 satfbrsuc 35351 prv 35413 bj-epelg 37051 bj-ideqgALT 37141 bj-idreseq 37145 bj-idreseqb 37146 bj-ideqg1ALT 37148 brcoss 38413 brcoels 38417 brdmqss 38628 aks6d1c1p1 42089 climf 45578 climf2 45622 nelbr 47224 iscllaw 48033 iscomlaw 48034 isasslaw 48036 islininds 48292 lindepsnlininds 48298 |
Copyright terms: Public domain | W3C validator |