MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabga Structured version   Visualization version   GIF version

Theorem brabga 5509
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brabga.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabga ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem brabga
StepHypRef Expression
1 df-br 5120 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabga.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2826 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
41, 3bitri 275 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opelopabga.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
65opelopabga 5508 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
74, 6bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  {copab 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182
This theorem is referenced by:  braba  5512  brabg  5514  epelg  5554  brcog  5846  fmptco  7119  ofrfvalg  7679  isfsupp  9377  wemaplem1  9560  oemapval  9697  wemapwe  9711  fpwwe2lem2  10646  fpwwelem  10659  clim  15510  rlim  15511  vdwmc  16998  isstruct2  17168  brssc  17827  isfunc  17877  isfull  17925  isfth  17929  ipole  18544  eqgval  19160  frgpuplem  19753  dvdsr  20322  islindf  21772  ulmval  26341  hpgbr  28739  isausgr  29143  issubgr  29250  isrgr  29539  isrusgr  29541  istrlson  29687  upgrwlkdvspth  29721  ispthson  29724  isspthson  29725  erclwwlkeq  29999  erclwwlkneq  30048  hlimi  31169  isinftm  33179  brfldext  33687  brfinext  33694  fldext2chn  33762  constrextdg2lem  33782  metidv  33923  ismntoplly  34056  brae  34272  braew  34273  brfae  34279  satfbrsuc  35388  prv  35450  bj-epelg  37086  bj-ideqgALT  37176  bj-idreseq  37180  bj-idreseqb  37181  bj-ideqg1ALT  37183  brcoss  38449  brcoels  38453  brdmqss  38664  aks6d1c1p1  42120  climf  45651  climf2  45695  nelbr  47303  iscllaw  48164  iscomlaw  48165  isasslaw  48167  islininds  48422  lindepsnlininds  48428
  Copyright terms: Public domain W3C validator