| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5120 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | eleq2i 2826 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | opelopabga 5508 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 |
| This theorem is referenced by: braba 5512 brabg 5514 epelg 5554 brcog 5846 fmptco 7119 ofrfvalg 7679 isfsupp 9377 wemaplem1 9560 oemapval 9697 wemapwe 9711 fpwwe2lem2 10646 fpwwelem 10659 clim 15510 rlim 15511 vdwmc 16998 isstruct2 17168 brssc 17827 isfunc 17877 isfull 17925 isfth 17929 ipole 18544 eqgval 19160 frgpuplem 19753 dvdsr 20322 islindf 21772 ulmval 26341 hpgbr 28739 isausgr 29143 issubgr 29250 isrgr 29539 isrusgr 29541 istrlson 29687 upgrwlkdvspth 29721 ispthson 29724 isspthson 29725 erclwwlkeq 29999 erclwwlkneq 30048 hlimi 31169 isinftm 33179 brfldext 33687 brfinext 33694 fldext2chn 33762 constrextdg2lem 33782 metidv 33923 ismntoplly 34056 brae 34272 braew 34273 brfae 34279 satfbrsuc 35388 prv 35450 bj-epelg 37086 bj-ideqgALT 37176 bj-idreseq 37180 bj-idreseqb 37181 bj-ideqg1ALT 37183 brcoss 38449 brcoels 38453 brdmqss 38664 aks6d1c1p1 42120 climf 45651 climf2 45695 nelbr 47303 iscllaw 48164 iscomlaw 48165 isasslaw 48167 islininds 48422 lindepsnlininds 48428 |
| Copyright terms: Public domain | W3C validator |