MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabga Structured version   Visualization version   GIF version

Theorem brabga 5440
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brabga.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabga ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem brabga
StepHypRef Expression
1 df-br 5071 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabga.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2830 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
41, 3bitri 274 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opelopabga.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
65opelopabga 5439 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
74, 6syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133
This theorem is referenced by:  braba  5443  brabg  5445  epelg  5487  brcog  5764  fmptco  6983  ofrfvalg  7519  isfsupp  9062  wemaplem1  9235  oemapval  9371  wemapwe  9385  fpwwe2lem2  10319  fpwwelem  10332  clim  15131  rlim  15132  vdwmc  16607  isstruct2  16778  brssc  17443  isfunc  17495  isfull  17542  isfth  17546  ipole  18167  eqgval  18720  frgpuplem  19293  dvdsr  19803  islindf  20929  ulmval  25444  hpgbr  27025  isausgr  27437  issubgr  27541  isrgr  27829  isrusgr  27831  istrlson  27976  upgrwlkdvspth  28008  ispthson  28011  isspthson  28012  erclwwlkeq  28283  erclwwlkneq  28332  hlimi  29451  isinftm  31337  brfldext  31624  brfinext  31630  metidv  31744  ismntoplly  31875  brae  32109  braew  32110  brfae  32116  satfbrsuc  33228  prv  33290  bj-epelg  35166  bj-ideqgALT  35256  bj-idreseq  35260  bj-idreseqb  35261  bj-ideqg1ALT  35263  brcoss  36481  brcoels  36485  brdmqss  36686  climf  43053  climf2  43097  nelbr  44653  isomgr  45163  iscllaw  45271  iscomlaw  45272  isasslaw  45274  islininds  45675  lindepsnlininds  45681
  Copyright terms: Public domain W3C validator