Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brabga | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
brabga.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabga.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2830 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
5 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
6 | 5 | opelopabga 5439 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
7 | 4, 6 | syl5bb 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝑅𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 |
This theorem is referenced by: braba 5443 brabg 5445 epelg 5487 brcog 5764 fmptco 6983 ofrfvalg 7519 isfsupp 9062 wemaplem1 9235 oemapval 9371 wemapwe 9385 fpwwe2lem2 10319 fpwwelem 10332 clim 15131 rlim 15132 vdwmc 16607 isstruct2 16778 brssc 17443 isfunc 17495 isfull 17542 isfth 17546 ipole 18167 eqgval 18720 frgpuplem 19293 dvdsr 19803 islindf 20929 ulmval 25444 hpgbr 27025 isausgr 27437 issubgr 27541 isrgr 27829 isrusgr 27831 istrlson 27976 upgrwlkdvspth 28008 ispthson 28011 isspthson 28012 erclwwlkeq 28283 erclwwlkneq 28332 hlimi 29451 isinftm 31337 brfldext 31624 brfinext 31630 metidv 31744 ismntoplly 31875 brae 32109 braew 32110 brfae 32116 satfbrsuc 33228 prv 33290 bj-epelg 35166 bj-ideqgALT 35256 bj-idreseq 35260 bj-idreseqb 35261 bj-ideqg1ALT 35263 brcoss 36481 brcoels 36485 brdmqss 36686 climf 43053 climf2 43097 nelbr 44653 isomgr 45163 iscllaw 45271 iscomlaw 45272 isasslaw 45274 islininds 45675 lindepsnlininds 45681 |
Copyright terms: Public domain | W3C validator |