| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecgrp | Structured version Visualization version GIF version | ||
| Description: A vector space is a group. (Contributed by SN, 28-May-2023.) |
| Ref | Expression |
|---|---|
| lvecgrp | ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21049 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | 1 | lmodgrpd 20812 | 1 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Grpcgrp 18901 LVecclvec 21045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5273 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-lmod 20804 df-lvec 21046 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |