Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecgrp Structured version   Visualization version   GIF version

Theorem lvecgrp 42485
Description: A vector space is a group. (Contributed by SN, 28-May-2023.)
Assertion
Ref Expression
lvecgrp (𝑊 ∈ LVec → 𝑊 ∈ Grp)

Proof of Theorem lvecgrp
StepHypRef Expression
1 lveclmod 21049 . 2 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
21lmodgrpd 20812 1 (𝑊 ∈ LVec → 𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Grpcgrp 18901  LVecclvec 21045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5273
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-iota 6480  df-fv 6535  df-ov 7402  df-lmod 20804  df-lvec 21046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator