Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecring Structured version   Visualization version   GIF version

Theorem lvecring 42525
Description: The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.)
Hypothesis
Ref Expression
lvecring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lvecring (𝑊 ∈ LVec → 𝐹 ∈ Ring)

Proof of Theorem lvecring
StepHypRef Expression
1 lveclmod 21123 . 2 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2 lvecring.1 . . 3 𝐹 = (Scalar‘𝑊)
32lmodring 20883 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 1 (𝑊 ∈ LVec → 𝐹 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  Scalarcsca 17301  Ringcrg 20251  LModclmod 20875  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-lmod 20877  df-lvec 21120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator