Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecring Structured version   Visualization version   GIF version

Theorem lvecring 42493
Description: The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.)
Hypothesis
Ref Expression
lvecring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lvecring (𝑊 ∈ LVec → 𝐹 ∈ Ring)

Proof of Theorem lvecring
StepHypRef Expression
1 lveclmod 21078 . 2 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2 lvecring.1 . . 3 𝐹 = (Scalar‘𝑊)
32lmodring 20839 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 1 (𝑊 ∈ LVec → 𝐹 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6542  Scalarcsca 17280  Ringcrg 20203  LModclmod 20831  LVecclvec 21074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5288
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-iota 6495  df-fv 6550  df-ov 7417  df-lmod 20833  df-lvec 21075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator