| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.) |
| Ref | Expression |
|---|---|
| lvecring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecring | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21078 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | lvecring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20839 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6542 Scalarcsca 17280 Ringcrg 20203 LModclmod 20831 LVecclvec 21074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-ov 7417 df-lmod 20833 df-lvec 21075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |