| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.) |
| Ref | Expression |
|---|---|
| lvecring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecring | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21013 | . 2 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | lvecring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20774 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Scalarcsca 17223 Ringcrg 20142 LModclmod 20766 LVecclvec 21009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lmod 20768 df-lvec 21010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |