| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetval2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for meetval2 18299 and meeteu 18300. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu 18300 into meetlem 18301? |
| Ref | Expression |
|---|---|
| meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetval2.l | ⊢ ≤ = (le‘𝐾) |
| meetval2.m | ⊢ ∧ = (meet‘𝐾) |
| meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| meetval2lem | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5095 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑋)) | |
| 2 | breq2 5095 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑌)) | |
| 3 | 1, 2 | ralprg 4649 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ↔ (𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌))) |
| 4 | breq2 5095 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑋)) | |
| 5 | breq2 5095 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑌)) | |
| 6 | 4, 5 | ralprg 4649 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 ↔ (𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌))) |
| 7 | 6 | imbi1d 341 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
| 8 | 7 | ralbidv 3155 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
| 9 | 3, 8 | anbi12d 632 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {cpr 4578 class class class wbr 5091 ‘cfv 6481 Basecbs 17120 lecple 17168 meetcmee 18218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 |
| This theorem is referenced by: meetval2 18299 meeteu 18300 meetdm3 49008 |
| Copyright terms: Public domain | W3C validator |