|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > meetval2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for meetval2 18441 and meeteu 18442. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu 18442 into meetlem 18443? | 
| Ref | Expression | 
|---|---|
| meetval2.b | ⊢ 𝐵 = (Base‘𝐾) | 
| meetval2.l | ⊢ ≤ = (le‘𝐾) | 
| meetval2.m | ⊢ ∧ = (meet‘𝐾) | 
| meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) | 
| meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| meetval2lem | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 5146 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑋)) | |
| 2 | breq2 5146 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑌)) | |
| 3 | 1, 2 | ralprg 4695 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ↔ (𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌))) | 
| 4 | breq2 5146 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑋)) | |
| 5 | breq2 5146 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑌)) | |
| 6 | 4, 5 | ralprg 4695 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 ↔ (𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌))) | 
| 7 | 6 | imbi1d 341 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) | 
| 8 | 7 | ralbidv 3177 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) | 
| 9 | 3, 8 | anbi12d 632 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {cpr 4627 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 lecple 17305 meetcmee 18359 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 | 
| This theorem is referenced by: meetval2 18441 meeteu 18442 meetdm3 48875 | 
| Copyright terms: Public domain | W3C validator |