MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval2lem Structured version   Visualization version   GIF version

Theorem meetval2lem 18027
Description: Lemma for meetval2 18028 and meeteu 18029. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu 18029 into meetlem 18030?
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
meetval2lem ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝑦,𝐾,𝑧   𝑦,   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑦)   (𝑥,𝑧)   (𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetval2lem
StepHypRef Expression
1 breq2 5074 . . 3 (𝑦 = 𝑋 → (𝑥 𝑦𝑥 𝑋))
2 breq2 5074 . . 3 (𝑦 = 𝑌 → (𝑥 𝑦𝑥 𝑌))
31, 2ralprg 4627 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ↔ (𝑥 𝑋𝑥 𝑌)))
4 breq2 5074 . . . . 5 (𝑦 = 𝑋 → (𝑧 𝑦𝑧 𝑋))
5 breq2 5074 . . . . 5 (𝑦 = 𝑌 → (𝑧 𝑦𝑧 𝑌))
64, 5ralprg 4627 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦 ↔ (𝑧 𝑋𝑧 𝑌)))
76imbi1d 341 . . 3 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥) ↔ ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
87ralbidv 3120 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
93, 8anbi12d 630 1 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {cpr 4560   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  meetcmee 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071
This theorem is referenced by:  meetval2  18028  meeteu  18029  meetdm3  46153
  Copyright terms: Public domain W3C validator