MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval2lem Structured version   Visualization version   GIF version

Theorem meetval2lem 18347
Description: Lemma for meetval2 18348 and meeteu 18349. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu 18349 into meetlem 18350?
Hypotheses
Ref Expression
meetval2.b 𝐡 = (Baseβ€˜πΎ)
meetval2.l ≀ = (leβ€˜πΎ)
meetval2.m ∧ = (meetβ€˜πΎ)
meetval2.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
meetval2.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
meetval2.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
meetval2lem ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
Distinct variable groups:   π‘₯,𝑧,𝐡   π‘₯, ∧ ,𝑧   π‘₯,𝑦,𝐾,𝑧   𝑦, ≀   π‘₯,𝑋,𝑦,𝑧   π‘₯,π‘Œ,𝑦,𝑧
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑧)   𝐡(𝑦)   ≀ (π‘₯,𝑧)   ∧ (𝑦)   𝑉(π‘₯,𝑦,𝑧)

Proof of Theorem meetval2lem
StepHypRef Expression
1 breq2 5153 . . 3 (𝑦 = 𝑋 β†’ (π‘₯ ≀ 𝑦 ↔ π‘₯ ≀ 𝑋))
2 breq2 5153 . . 3 (𝑦 = π‘Œ β†’ (π‘₯ ≀ 𝑦 ↔ π‘₯ ≀ π‘Œ))
31, 2ralprg 4699 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ↔ (π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ)))
4 breq2 5153 . . . . 5 (𝑦 = 𝑋 β†’ (𝑧 ≀ 𝑦 ↔ 𝑧 ≀ 𝑋))
5 breq2 5153 . . . . 5 (𝑦 = π‘Œ β†’ (𝑧 ≀ 𝑦 ↔ 𝑧 ≀ π‘Œ))
64, 5ralprg 4699 . . . 4 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 ↔ (𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ)))
76imbi1d 342 . . 3 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯) ↔ ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯)))
87ralbidv 3178 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯) ↔ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯)))
93, 8anbi12d 632 1 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {cpr 4631   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  meetcmee 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150
This theorem is referenced by:  meetval2  18348  meeteu  18349  meetdm3  47604
  Copyright terms: Public domain W3C validator