MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetlem Structured version   Visualization version   GIF version

Theorem meetlem 18296
Description: Lemma for meet properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
meetlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetlem (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem meetlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 meetval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 meetval2.l . . . . 5 = (le‘𝐾)
3 meetval2.m . . . . 5 = (meet‘𝐾)
4 meetval2.k . . . . 5 (𝜑𝐾𝑉)
5 meetval2.x . . . . 5 (𝜑𝑋𝐵)
6 meetval2.y . . . . 5 (𝜑𝑌𝐵)
7 meetlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7meeteu 18295 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
9 riotasbc 7316 . . . 4 (∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) → [(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
111, 2, 3, 4, 5, 6meetval2 18294 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1211sbceq1d 3741 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ [(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1310, 12mpbird 257 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
14 ovex 7374 . . 3 (𝑋 𝑌) ∈ V
15 breq1 5089 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑥 𝑋 ↔ (𝑋 𝑌) 𝑋))
16 breq1 5089 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑥 𝑌 ↔ (𝑋 𝑌) 𝑌))
1715, 16anbi12d 632 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑥 𝑋𝑥 𝑌) ↔ ((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌)))
18 breq2 5090 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑧 𝑥𝑧 (𝑋 𝑌)))
1918imbi2d 340 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥) ↔ ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2019ralbidv 3155 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥) ↔ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2117, 20anbi12d 632 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)))))
2214, 21sbcie 3778 . 2 ([(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2313, 22sylib 218 1 (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  [wsbc 3736  cop 4577   class class class wbr 5086  dom cdm 5611  cfv 6476  crio 7297  (class class class)co 7341  Basecbs 17115  lecple 17163  meetcmee 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-glb 18246  df-meet 18248
This theorem is referenced by:  lemeet1  18297  lemeet2  18298  meetle  18299
  Copyright terms: Public domain W3C validator