MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetlem Structured version   Visualization version   GIF version

Theorem meetlem 17627
Description: Lemma for meet properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
meetlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetlem (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem meetlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 meetval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 meetval2.l . . . . 5 = (le‘𝐾)
3 meetval2.m . . . . 5 = (meet‘𝐾)
4 meetval2.k . . . . 5 (𝜑𝐾𝑉)
5 meetval2.x . . . . 5 (𝜑𝑋𝐵)
6 meetval2.y . . . . 5 (𝜑𝑌𝐵)
7 meetlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7meeteu 17626 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
9 riotasbc 7111 . . . 4 (∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) → [(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
111, 2, 3, 4, 5, 6meetval2 17625 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1211sbceq1d 3725 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ [(𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1310, 12mpbird 260 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
14 ovex 7168 . . 3 (𝑋 𝑌) ∈ V
15 breq1 5033 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑥 𝑋 ↔ (𝑋 𝑌) 𝑋))
16 breq1 5033 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑥 𝑌 ↔ (𝑋 𝑌) 𝑌))
1715, 16anbi12d 633 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑥 𝑋𝑥 𝑌) ↔ ((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌)))
18 breq2 5034 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑧 𝑥𝑧 (𝑋 𝑌)))
1918imbi2d 344 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥) ↔ ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2019ralbidv 3162 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥) ↔ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2117, 20anbi12d 633 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌)))))
2214, 21sbcie 3760 . 2 ([(𝑋 𝑌) / 𝑥]((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)) ↔ (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
2313, 22sylib 221 1 (𝜑 → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 (𝑋 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  ∃!wreu 3108  [wsbc 3720  cop 4531   class class class wbr 5030  dom cdm 5519  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  lecple 16564  meetcmee 17547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-glb 17577  df-meet 17579
This theorem is referenced by:  lemeet1  17628  lemeet2  17629  meetle  17630
  Copyright terms: Public domain W3C validator