Step | Hyp | Ref
| Expression |
1 | | meetval2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | meetval2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | meetval2.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
4 | | meetval2.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
5 | | meetval2.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
6 | | meetval2.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
7 | | meetlem.e |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
8 | 1, 2, 3, 4, 5, 6, 7 | meeteu 18114 |
. . . 4
⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
9 | | riotasbc 7251 |
. . . 4
⊢
(∃!𝑥 ∈
𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)) → [(℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) / 𝑥]((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 →
[(℩𝑥
∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) / 𝑥]((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
11 | 1, 2, 3, 4, 5, 6 | meetval2 18113 |
. . . 4
⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
12 | 11 | sbceq1d 3721 |
. . 3
⊢ (𝜑 → ([(𝑋 ∧ 𝑌) / 𝑥]((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)) ↔ [(℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) / 𝑥]((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
13 | 10, 12 | mpbird 256 |
. 2
⊢ (𝜑 → [(𝑋 ∧ 𝑌) / 𝑥]((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
14 | | ovex 7308 |
. . 3
⊢ (𝑋 ∧ 𝑌) ∈ V |
15 | | breq1 5077 |
. . . . 5
⊢ (𝑥 = (𝑋 ∧ 𝑌) → (𝑥 ≤ 𝑋 ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) |
16 | | breq1 5077 |
. . . . 5
⊢ (𝑥 = (𝑋 ∧ 𝑌) → (𝑥 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) ≤ 𝑌)) |
17 | 15, 16 | anbi12d 631 |
. . . 4
⊢ (𝑥 = (𝑋 ∧ 𝑌) → ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌))) |
18 | | breq2 5078 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∧ 𝑌) → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ (𝑋 ∧ 𝑌))) |
19 | 18 | imbi2d 341 |
. . . . 5
⊢ (𝑥 = (𝑋 ∧ 𝑌) → (((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥) ↔ ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
20 | 19 | ralbidv 3112 |
. . . 4
⊢ (𝑥 = (𝑋 ∧ 𝑌) → (∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
21 | 17, 20 | anbi12d 631 |
. . 3
⊢ (𝑥 = (𝑋 ∧ 𝑌) → (((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)) ↔ (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌))))) |
22 | 14, 21 | sbcie 3759 |
. 2
⊢
([(𝑋 ∧ 𝑌) / 𝑥]((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)) ↔ (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |
23 | 13, 22 | sylib 217 |
1
⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) |