| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetdmss | Structured version Visualization version GIF version | ||
| Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetdmss.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetdmss.j | ⊢ ∧ = (meet‘𝐾) |
| meetdmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| meetdmss | ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5800 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)} | |
| 2 | meetdmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2735 | . . . . . 6 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | meetdmss.j | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 5 | 3, 4 | meetdm 18399 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}) |
| 7 | 6 | releqd 5757 | . . 3 ⊢ (𝜑 → (Rel dom ∧ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})) |
| 8 | 1, 7 | mpbiri 258 | . 2 ⊢ (𝜑 → Rel dom ∧ ) |
| 9 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
| 11 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
| 13 | 3, 4, 2, 10, 12 | meetdef 18400 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
| 14 | meetdmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | eqid 2735 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → 𝐾 ∈ 𝑉) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)) | |
| 18 | 14, 15, 3, 16, 17 | glbelss 18377 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
| 19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
| 20 | 9, 11 | prss 4796 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 21 | opelxpi 5691 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
| 22 | 20, 21 | sylbir 235 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
| 23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 24 | 13, 23 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 25 | 8, 24 | relssdv 5767 | 1 ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {cpr 4603 〈cop 4607 {copab 5181 × cxp 5652 dom cdm 5654 Rel wrel 5659 ‘cfv 6531 Basecbs 17228 lecple 17278 glbcglb 18322 meetcmee 18324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-oprab 7409 df-glb 18357 df-meet 18359 |
| This theorem is referenced by: clatl 18518 meetdm2 48944 |
| Copyright terms: Public domain | W3C validator |