MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdmss Structured version   Visualization version   GIF version

Theorem meetdmss 18328
Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetdmss.b 𝐵 = (Base‘𝐾)
meetdmss.j = (meet‘𝐾)
meetdmss.k (𝜑𝐾𝑉)
Assertion
Ref Expression
meetdmss (𝜑 → dom ⊆ (𝐵 × 𝐵))

Proof of Theorem meetdmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5775 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}
2 meetdmss.k . . . . 5 (𝜑𝐾𝑉)
3 eqid 2729 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
4 meetdmss.j . . . . . 6 = (meet‘𝐾)
53, 4meetdm 18324 . . . . 5 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})
62, 5syl 17 . . . 4 (𝜑 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})
76releqd 5733 . . 3 (𝜑 → (Rel dom ↔ Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}))
81, 7mpbiri 258 . 2 (𝜑 → Rel dom )
9 vex 3448 . . . . 5 𝑥 ∈ V
109a1i 11 . . . 4 (𝜑𝑥 ∈ V)
11 vex 3448 . . . . 5 𝑦 ∈ V
1211a1i 11 . . . 4 (𝜑𝑦 ∈ V)
133, 4, 2, 10, 12meetdef 18325 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
14 meetdmss.b . . . . . 6 𝐵 = (Base‘𝐾)
15 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
162adantr 480 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → 𝐾𝑉)
17 simpr 484 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
1814, 15, 3, 16, 17glbelss 18302 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵)
1918ex 412 . . . 4 (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵))
209, 11prss 4780 . . . . 5 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
21 opelxpi 5668 . . . . 5 ((𝑥𝐵𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2220, 21sylbir 235 . . . 4 ({𝑥, 𝑦} ⊆ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2319, 22syl6 35 . . 3 (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
2413, 23sylbid 240 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
258, 24relssdv 5742 1 (𝜑 → dom ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {cpr 4587  cop 4591  {copab 5164   × cxp 5629  dom cdm 5631  Rel wrel 5636  cfv 6499  Basecbs 17155  lecple 17203  glbcglb 18247  meetcmee 18249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-oprab 7373  df-glb 18282  df-meet 18284
This theorem is referenced by:  clatl  18443  meetdm2  48931
  Copyright terms: Public domain W3C validator