![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetdmss | Structured version Visualization version GIF version |
Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
meetdmss.b | ⊢ 𝐵 = (Base‘𝐾) |
meetdmss.j | ⊢ ∧ = (meet‘𝐾) |
meetdmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
meetdmss | ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5845 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)} | |
2 | meetdmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
3 | eqid 2740 | . . . . . 6 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | meetdmss.j | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
5 | 3, 4 | meetdm 18459 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}) |
7 | 6 | releqd 5802 | . . 3 ⊢ (𝜑 → (Rel dom ∧ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})) |
8 | 1, 7 | mpbiri 258 | . 2 ⊢ (𝜑 → Rel dom ∧ ) |
9 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
11 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
13 | 3, 4, 2, 10, 12 | meetdef 18460 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾))) |
14 | meetdmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
15 | eqid 2740 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → 𝐾 ∈ 𝑉) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)) | |
18 | 14, 15, 3, 16, 17 | glbelss 18437 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
20 | 9, 11 | prss 4845 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
21 | opelxpi 5737 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
22 | 20, 21 | sylbir 235 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
24 | 13, 23 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∧ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
25 | 8, 24 | relssdv 5812 | 1 ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {cpr 4650 〈cop 4654 {copab 5228 × cxp 5698 dom cdm 5700 Rel wrel 5705 ‘cfv 6573 Basecbs 17258 lecple 17318 glbcglb 18380 meetcmee 18382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-oprab 7452 df-glb 18417 df-meet 18419 |
This theorem is referenced by: clatl 18578 meetdm2 48650 |
Copyright terms: Public domain | W3C validator |