MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdmss Structured version   Visualization version   GIF version

Theorem meetdmss 18463
Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetdmss.b 𝐵 = (Base‘𝐾)
meetdmss.j = (meet‘𝐾)
meetdmss.k (𝜑𝐾𝑉)
Assertion
Ref Expression
meetdmss (𝜑 → dom ⊆ (𝐵 × 𝐵))

Proof of Theorem meetdmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5845 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}
2 meetdmss.k . . . . 5 (𝜑𝐾𝑉)
3 eqid 2740 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
4 meetdmss.j . . . . . 6 = (meet‘𝐾)
53, 4meetdm 18459 . . . . 5 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})
62, 5syl 17 . . . 4 (𝜑 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)})
76releqd 5802 . . 3 (𝜑 → (Rel dom ↔ Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (glb‘𝐾)}))
81, 7mpbiri 258 . 2 (𝜑 → Rel dom )
9 vex 3492 . . . . 5 𝑥 ∈ V
109a1i 11 . . . 4 (𝜑𝑥 ∈ V)
11 vex 3492 . . . . 5 𝑦 ∈ V
1211a1i 11 . . . 4 (𝜑𝑦 ∈ V)
133, 4, 2, 10, 12meetdef 18460 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
14 meetdmss.b . . . . . 6 𝐵 = (Base‘𝐾)
15 eqid 2740 . . . . . 6 (le‘𝐾) = (le‘𝐾)
162adantr 480 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → 𝐾𝑉)
17 simpr 484 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾))
1814, 15, 3, 16, 17glbelss 18437 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (glb‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵)
1918ex 412 . . . 4 (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵))
209, 11prss 4845 . . . . 5 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
21 opelxpi 5737 . . . . 5 ((𝑥𝐵𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2220, 21sylbir 235 . . . 4 ({𝑥, 𝑦} ⊆ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2319, 22syl6 35 . . 3 (𝜑 → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
2413, 23sylbid 240 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
258, 24relssdv 5812 1 (𝜑 → dom ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {cpr 4650  cop 4654  {copab 5228   × cxp 5698  dom cdm 5700  Rel wrel 5705  cfv 6573  Basecbs 17258  lecple 17318  glbcglb 18380  meetcmee 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-oprab 7452  df-glb 18417  df-meet 18419
This theorem is referenced by:  clatl  18578  meetdm2  48650
  Copyright terms: Public domain W3C validator