MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdmss Structured version   Visualization version   GIF version

Theorem meetdmss 18392
Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetdmss.b 𝐡 = (Baseβ€˜πΎ)
meetdmss.j ∧ = (meetβ€˜πΎ)
meetdmss.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
Assertion
Ref Expression
meetdmss (πœ‘ β†’ dom ∧ βŠ† (𝐡 Γ— 𝐡))

Proof of Theorem meetdmss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5827 . . 3 Rel {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)}
2 meetdmss.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ 𝑉)
3 eqid 2728 . . . . . 6 (glbβ€˜πΎ) = (glbβ€˜πΎ)
4 meetdmss.j . . . . . 6 ∧ = (meetβ€˜πΎ)
53, 4meetdm 18388 . . . . 5 (𝐾 ∈ 𝑉 β†’ dom ∧ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)})
62, 5syl 17 . . . 4 (πœ‘ β†’ dom ∧ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)})
76releqd 5784 . . 3 (πœ‘ β†’ (Rel dom ∧ ↔ Rel {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)}))
81, 7mpbiri 257 . 2 (πœ‘ β†’ Rel dom ∧ )
9 vex 3477 . . . . 5 π‘₯ ∈ V
109a1i 11 . . . 4 (πœ‘ β†’ π‘₯ ∈ V)
11 vex 3477 . . . . 5 𝑦 ∈ V
1211a1i 11 . . . 4 (πœ‘ β†’ 𝑦 ∈ V)
133, 4, 2, 10, 12meetdef 18389 . . 3 (πœ‘ β†’ (⟨π‘₯, π‘¦βŸ© ∈ dom ∧ ↔ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)))
14 meetdmss.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
15 eqid 2728 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
162adantr 479 . . . . . 6 ((πœ‘ ∧ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)) β†’ 𝐾 ∈ 𝑉)
17 simpr 483 . . . . . 6 ((πœ‘ ∧ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)) β†’ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ))
1814, 15, 3, 16, 17glbelss 18366 . . . . 5 ((πœ‘ ∧ {π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ)) β†’ {π‘₯, 𝑦} βŠ† 𝐡)
1918ex 411 . . . 4 (πœ‘ β†’ ({π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ) β†’ {π‘₯, 𝑦} βŠ† 𝐡))
209, 11prss 4828 . . . . 5 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ↔ {π‘₯, 𝑦} βŠ† 𝐡)
21 opelxpi 5719 . . . . 5 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡))
2220, 21sylbir 234 . . . 4 ({π‘₯, 𝑦} βŠ† 𝐡 β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡))
2319, 22syl6 35 . . 3 (πœ‘ β†’ ({π‘₯, 𝑦} ∈ dom (glbβ€˜πΎ) β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡)))
2413, 23sylbid 239 . 2 (πœ‘ β†’ (⟨π‘₯, π‘¦βŸ© ∈ dom ∧ β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡)))
258, 24relssdv 5794 1 (πœ‘ β†’ dom ∧ βŠ† (𝐡 Γ— 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3473   βŠ† wss 3949  {cpr 4634  βŸ¨cop 4638  {copab 5214   Γ— cxp 5680  dom cdm 5682  Rel wrel 5687  β€˜cfv 6553  Basecbs 17187  lecple 17247  glbcglb 18309  meetcmee 18311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-oprab 7430  df-glb 18346  df-meet 18348
This theorem is referenced by:  clatl  18507  meetdm2  48067
  Copyright terms: Public domain W3C validator