MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval2 Structured version   Visualization version   GIF version

Theorem meetval2 18410
Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
meetval2 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem meetval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (glb‘𝐾) = (glb‘𝐾)
2 meetval2.m . . 3 = (meet‘𝐾)
3 meetval2.k . . 3 (𝜑𝐾𝑉)
4 meetval2.x . . 3 (𝜑𝑋𝐵)
5 meetval2.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5meetval 18406 . 2 (𝜑 → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
7 meetval2.b . . 3 𝐵 = (Base‘𝐾)
8 meetval2.l . . 3 = (le‘𝐾)
9 biid 261 . . 3 ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)))
104, 5prssd 4803 . . 3 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
117, 8, 1, 9, 3, 10glbval 18384 . 2 (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) = (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥))))
127, 8, 2, 3, 4, 5meetval2lem 18409 . . . 4 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1312riotabidv 7369 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
144, 5, 13syl2anc 584 . 2 (𝜑 → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
156, 11, 143eqtrd 2775 1 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {cpr 4608   class class class wbr 5124  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  lecple 17283  glbcglb 18327  meetcmee 18329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-glb 18362  df-meet 18364
This theorem is referenced by:  meetlem  18412
  Copyright terms: Public domain W3C validator