MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval2 Structured version   Visualization version   GIF version

Theorem meetval2 18352
Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐡 = (Baseβ€˜πΎ)
meetval2.l ≀ = (leβ€˜πΎ)
meetval2.m ∧ = (meetβ€˜πΎ)
meetval2.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
meetval2.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
meetval2.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
meetval2 (πœ‘ β†’ (𝑋 ∧ π‘Œ) = (β„©π‘₯ ∈ 𝐡 ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
Distinct variable groups:   π‘₯,𝑧,𝐡   π‘₯, ∧ ,𝑧   π‘₯,𝐾,𝑧   π‘₯,𝑋,𝑧   π‘₯,π‘Œ,𝑧
Allowed substitution hints:   πœ‘(π‘₯,𝑧)   ≀ (π‘₯,𝑧)   𝑉(π‘₯,𝑧)

Proof of Theorem meetval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (glbβ€˜πΎ) = (glbβ€˜πΎ)
2 meetval2.m . . 3 ∧ = (meetβ€˜πΎ)
3 meetval2.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
4 meetval2.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
5 meetval2.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
61, 2, 3, 4, 5meetval 18348 . 2 (πœ‘ β†’ (𝑋 ∧ π‘Œ) = ((glbβ€˜πΎ)β€˜{𝑋, π‘Œ}))
7 meetval2.b . . 3 𝐡 = (Baseβ€˜πΎ)
8 meetval2.l . . 3 ≀ = (leβ€˜πΎ)
9 biid 260 . . 3 ((βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ (βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)))
104, 5prssd 4825 . . 3 (πœ‘ β†’ {𝑋, π‘Œ} βŠ† 𝐡)
117, 8, 1, 9, 3, 10glbval 18326 . 2 (πœ‘ β†’ ((glbβ€˜πΎ)β€˜{𝑋, π‘Œ}) = (β„©π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯))))
127, 8, 2, 3, 4, 5meetval2lem 18351 . . . 4 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯)) ↔ ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
1312riotabidv 7369 . . 3 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (β„©π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯))) = (β„©π‘₯ ∈ 𝐡 ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
144, 5, 13syl2anc 584 . 2 (πœ‘ β†’ (β„©π‘₯ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}π‘₯ ≀ 𝑦 ∧ βˆ€π‘§ ∈ 𝐡 (βˆ€π‘¦ ∈ {𝑋, π‘Œ}𝑧 ≀ 𝑦 β†’ 𝑧 ≀ π‘₯))) = (β„©π‘₯ ∈ 𝐡 ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
156, 11, 143eqtrd 2776 1 (πœ‘ β†’ (𝑋 ∧ π‘Œ) = (β„©π‘₯ ∈ 𝐡 ((π‘₯ ≀ 𝑋 ∧ π‘₯ ≀ π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 ((𝑧 ≀ 𝑋 ∧ 𝑧 ≀ π‘Œ) β†’ 𝑧 ≀ π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {cpr 4630   class class class wbr 5148  β€˜cfv 6543  β„©crio 7366  (class class class)co 7411  Basecbs 17148  lecple 17208  glbcglb 18267  meetcmee 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-glb 18304  df-meet 18306
This theorem is referenced by:  meetlem  18354
  Copyright terms: Public domain W3C validator