| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetval2 | Structured version Visualization version GIF version | ||
| Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetval2.l | ⊢ ≤ = (le‘𝐾) |
| meetval2.m | ⊢ ∧ = (meet‘𝐾) |
| meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| meetval2 | ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 2 | meetval2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 3 | meetval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | meetval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | meetval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | meetval 18437 | . 2 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
| 7 | meetval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | meetval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 9 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 10 | 4, 5 | prssd 4821 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝐵) |
| 11 | 7, 8, 1, 9, 3, 10 | glbval 18415 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 12 | 7, 8, 2, 3, 4, 5 | meetval2lem 18440 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 13 | 12 | riotabidv 7391 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 14 | 4, 5, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 15 | 6, 11, 14 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {cpr 4627 class class class wbr 5142 ‘cfv 6560 ℩crio 7388 (class class class)co 7432 Basecbs 17248 lecple 17305 glbcglb 18357 meetcmee 18359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-glb 18393 df-meet 18395 |
| This theorem is referenced by: meetlem 18443 |
| Copyright terms: Public domain | W3C validator |