Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > meetval2 | Structured version Visualization version GIF version |
Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
Ref | Expression |
---|---|
meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
meetval2.l | ⊢ ≤ = (le‘𝐾) |
meetval2.m | ⊢ ∧ = (meet‘𝐾) |
meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
meetval2 | ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | meetval2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
3 | meetval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | meetval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | meetval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | meetval 17757 | . 2 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | meetval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
8 | meetval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
9 | biid 264 | . . 3 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
10 | 4, 5 | prssd 4720 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝐵) |
11 | 7, 8, 1, 9, 3, 10 | glbval 17735 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
12 | 7, 8, 2, 3, 4, 5 | meetval2lem 17760 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
13 | 12 | riotabidv 7141 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
14 | 4, 5, 13 | syl2anc 587 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
15 | 6, 11, 14 | 3eqtrd 2778 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 {cpr 4528 class class class wbr 5040 ‘cfv 6349 ℩crio 7138 (class class class)co 7182 Basecbs 16598 lecple 16687 glbcglb 17681 meetcmee 17683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-glb 17713 df-meet 17715 |
This theorem is referenced by: meetlem 17763 |
Copyright terms: Public domain | W3C validator |