Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetdm3 Structured version   Visualization version   GIF version

Theorem meetdm3 48651
Description: The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
joindm2.b 𝐵 = (Base‘𝐾)
joindm2.k (𝜑𝐾𝑉)
meetdm2.g 𝐺 = (glb‘𝐾)
meetdm2.m = (meet‘𝐾)
meetdm3.l = (le‘𝐾)
Assertion
Ref Expression
meetdm3 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Distinct variable groups:   𝑤, ,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐾,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦)   (𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem meetdm3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 joindm2.b . . 3 𝐵 = (Base‘𝐾)
2 joindm2.k . . 3 (𝜑𝐾𝑉)
3 meetdm2.g . . 3 𝐺 = (glb‘𝐾)
4 meetdm2.m . . 3 = (meet‘𝐾)
51, 2, 3, 4meetdm2 48650 . 2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
7 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
86, 7prssd 4847 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → {𝑥, 𝑦} ⊆ 𝐵)
9 meetdm3.l . . . . . . 7 = (le‘𝐾)
10 biid 261 . . . . . . 7 ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))
111, 9, 3, 10, 2glbeldm 18436 . . . . . 6 (𝜑 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))))
1211baibd 539 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
138, 12syldan 590 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
142adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾𝑉)
151, 9, 4, 14, 6, 7meetval2lem 18464 . . . . . 6 ((𝑥𝐵𝑦𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1615reubidv 3406 . . . . 5 ((𝑥𝐵𝑦𝐵) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1716adantl 481 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1813, 17bitrd 279 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
19182ralbidva 3225 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
205, 19bitrd 279 1 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  wss 3976  {cpr 4650   class class class wbr 5166   × cxp 5698  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  glbcglb 18380  meetcmee 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-oprab 7452  df-glb 18417  df-meet 18419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator