Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetdm3 Structured version   Visualization version   GIF version

Theorem meetdm3 49010
Description: The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
joindm2.b 𝐵 = (Base‘𝐾)
joindm2.k (𝜑𝐾𝑉)
meetdm2.g 𝐺 = (glb‘𝐾)
meetdm2.m = (meet‘𝐾)
meetdm3.l = (le‘𝐾)
Assertion
Ref Expression
meetdm3 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Distinct variable groups:   𝑤, ,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐾,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦)   (𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem meetdm3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 joindm2.b . . 3 𝐵 = (Base‘𝐾)
2 joindm2.k . . 3 (𝜑𝐾𝑉)
3 meetdm2.g . . 3 𝐺 = (glb‘𝐾)
4 meetdm2.m . . 3 = (meet‘𝐾)
51, 2, 3, 4meetdm2 49009 . 2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
7 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
86, 7prssd 4771 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → {𝑥, 𝑦} ⊆ 𝐵)
9 meetdm3.l . . . . . . 7 = (le‘𝐾)
10 biid 261 . . . . . . 7 ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))
111, 9, 3, 10, 2glbeldm 18270 . . . . . 6 (𝜑 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))))
1211baibd 539 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
138, 12syldan 591 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
142adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾𝑉)
151, 9, 4, 14, 6, 7meetval2lem 18298 . . . . . 6 ((𝑥𝐵𝑦𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1615reubidv 3362 . . . . 5 ((𝑥𝐵𝑦𝐵) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1716adantl 481 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1813, 17bitrd 279 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
19182ralbidva 3194 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
205, 19bitrd 279 1 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  wss 3897  {cpr 4575   class class class wbr 5089   × cxp 5612  dom cdm 5614  cfv 6481  Basecbs 17120  lecple 17168  glbcglb 18216  meetcmee 18218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-oprab 7350  df-glb 18251  df-meet 18253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator