Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetdm3 Structured version   Visualization version   GIF version

Theorem meetdm3 46265
Description: The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
joindm2.b 𝐵 = (Base‘𝐾)
joindm2.k (𝜑𝐾𝑉)
meetdm2.g 𝐺 = (glb‘𝐾)
meetdm2.m = (meet‘𝐾)
meetdm3.l = (le‘𝐾)
Assertion
Ref Expression
meetdm3 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Distinct variable groups:   𝑤, ,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐾,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦)   (𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem meetdm3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 joindm2.b . . 3 𝐵 = (Base‘𝐾)
2 joindm2.k . . 3 (𝜑𝐾𝑉)
3 meetdm2.g . . 3 𝐺 = (glb‘𝐾)
4 meetdm2.m . . 3 = (meet‘𝐾)
51, 2, 3, 4meetdm2 46264 . 2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
6 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
7 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
86, 7prssd 4755 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → {𝑥, 𝑦} ⊆ 𝐵)
9 meetdm3.l . . . . . . 7 = (le‘𝐾)
10 biid 260 . . . . . . 7 ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))
111, 9, 3, 10, 2glbeldm 18084 . . . . . 6 (𝜑 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))))
1211baibd 540 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
138, 12syldan 591 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
142adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾𝑉)
151, 9, 4, 14, 6, 7meetval2lem 18112 . . . . . 6 ((𝑥𝐵𝑦𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1615reubidv 3323 . . . . 5 ((𝑥𝐵𝑦𝐵) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1716adantl 482 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1813, 17bitrd 278 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
19182ralbidva 3128 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
205, 19bitrd 278 1 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  wss 3887  {cpr 4563   class class class wbr 5074   × cxp 5587  dom cdm 5589  cfv 6433  Basecbs 16912  lecple 16969  glbcglb 18028  meetcmee 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-oprab 7279  df-glb 18065  df-meet 18067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator