Step | Hyp | Ref
| Expression |
1 | | joindm2.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | joindm2.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
3 | | meetdm2.g |
. . 3
⊢ 𝐺 = (glb‘𝐾) |
4 | | meetdm2.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | 1, 2, 3, 4 | meetdm2 46152 |
. 2
⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) |
6 | | simprl 767 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
7 | | simprr 769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
8 | 6, 7 | prssd 4752 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → {𝑥, 𝑦} ⊆ 𝐵) |
9 | | meetdm3.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
10 | | biid 260 |
. . . . . . 7
⊢
((∀𝑣 ∈
{𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧))) |
11 | 1, 9, 3, 10, 2 | glbeldm 17999 |
. . . . . 6
⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧))))) |
12 | 11 | baibd 539 |
. . . . 5
⊢ ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧)))) |
13 | 8, 12 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧)))) |
14 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ 𝑉) |
15 | 1, 9, 4, 14, 6, 7 | meetval2lem 18027 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧)) ↔ ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) |
16 | 15 | reubidv 3315 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧)) ↔ ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) |
17 | 16 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 ≤ 𝑣 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 ≤ 𝑣 → 𝑤 ≤ 𝑧)) ↔ ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) |
18 | 13, 17 | bitrd 278 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) |
19 | 18 | 2ralbidva 3121 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) |
20 | 5, 19 | bitrd 278 |
1
⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) |