Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetdm3 Structured version   Visualization version   GIF version

Theorem meetdm3 45881
Description: The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
joindm2.b 𝐵 = (Base‘𝐾)
joindm2.k (𝜑𝐾𝑉)
meetdm2.g 𝐺 = (glb‘𝐾)
meetdm2.m = (meet‘𝐾)
meetdm3.l = (le‘𝐾)
Assertion
Ref Expression
meetdm3 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Distinct variable groups:   𝑤, ,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐾,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦)   (𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem meetdm3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 joindm2.b . . 3 𝐵 = (Base‘𝐾)
2 joindm2.k . . 3 (𝜑𝐾𝑉)
3 meetdm2.g . . 3 𝐺 = (glb‘𝐾)
4 meetdm2.m . . 3 = (meet‘𝐾)
51, 2, 3, 4meetdm2 45880 . 2 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
6 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
7 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
86, 7prssd 4721 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → {𝑥, 𝑦} ⊆ 𝐵)
9 meetdm3.l . . . . . . 7 = (le‘𝐾)
10 biid 264 . . . . . . 7 ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))
111, 9, 3, 10, 2glbeldm 17826 . . . . . 6 (𝜑 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)))))
1211baibd 543 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
138, 12syldan 594 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧))))
142adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐾𝑉)
151, 9, 4, 14, 6, 7meetval2lem 17854 . . . . . 6 ((𝑥𝐵𝑦𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1615reubidv 3291 . . . . 5 ((𝑥𝐵𝑦𝐵) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1716adantl 485 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (∃!𝑧𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑧 𝑣 ∧ ∀𝑤𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑤 𝑣𝑤 𝑧)) ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
1813, 17bitrd 282 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
19182ralbidva 3109 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
205, 19bitrd 282 1 (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  ∃!wreu 3053  wss 3853  {cpr 4529   class class class wbr 5039   × cxp 5534  dom cdm 5536  cfv 6358  Basecbs 16666  lecple 16756  glbcglb 17771  meetcmee 17773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-oprab 7195  df-glb 17807  df-meet 17809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator