Step | Hyp | Ref
| Expression |
1 | | meetlem.e |
. 2
β’ (π β β¨π, πβ© β dom β§ ) |
2 | | eqid 2732 |
. . . 4
β’
(glbβπΎ) =
(glbβπΎ) |
3 | | meetval2.m |
. . . 4
β’ β§ =
(meetβπΎ) |
4 | | meetval2.k |
. . . 4
β’ (π β πΎ β π) |
5 | | meetval2.x |
. . . 4
β’ (π β π β π΅) |
6 | | meetval2.y |
. . . 4
β’ (π β π β π΅) |
7 | 2, 3, 4, 5, 6 | meetdef 18347 |
. . 3
β’ (π β (β¨π, πβ© β dom β§ β {π, π} β dom (glbβπΎ))) |
8 | | meetval2.b |
. . . . . 6
β’ π΅ = (BaseβπΎ) |
9 | | meetval2.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
10 | | biid 260 |
. . . . . 6
β’
((βπ¦ β
{π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯)) β (βπ¦ β {π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯))) |
11 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ {π, π} β dom (glbβπΎ)) β πΎ β π) |
12 | | simpr 485 |
. . . . . 6
β’ ((π β§ {π, π} β dom (glbβπΎ)) β {π, π} β dom (glbβπΎ)) |
13 | 8, 9, 2, 10, 11, 12 | glbeu 18325 |
. . . . 5
β’ ((π β§ {π, π} β dom (glbβπΎ)) β β!π₯ β π΅ (βπ¦ β {π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯))) |
14 | 13 | ex 413 |
. . . 4
β’ (π β ({π, π} β dom (glbβπΎ) β β!π₯ β π΅ (βπ¦ β {π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯)))) |
15 | 8, 9, 3, 4, 5, 6 | meetval2lem 18351 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β ((βπ¦ β {π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯)) β ((π₯ β€ π β§ π₯ β€ π) β§ βπ§ β π΅ ((π§ β€ π β§ π§ β€ π) β π§ β€ π₯)))) |
16 | 5, 6, 15 | syl2anc 584 |
. . . . 5
β’ (π β ((βπ¦ β {π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯)) β ((π₯ β€ π β§ π₯ β€ π) β§ βπ§ β π΅ ((π§ β€ π β§ π§ β€ π) β π§ β€ π₯)))) |
17 | 16 | reubidv 3394 |
. . . 4
β’ (π β (β!π₯ β π΅ (βπ¦ β {π, π}π₯ β€ π¦ β§ βπ§ β π΅ (βπ¦ β {π, π}π§ β€ π¦ β π§ β€ π₯)) β β!π₯ β π΅ ((π₯ β€ π β§ π₯ β€ π) β§ βπ§ β π΅ ((π§ β€ π β§ π§ β€ π) β π§ β€ π₯)))) |
18 | 14, 17 | sylibd 238 |
. . 3
β’ (π β ({π, π} β dom (glbβπΎ) β β!π₯ β π΅ ((π₯ β€ π β§ π₯ β€ π) β§ βπ§ β π΅ ((π§ β€ π β§ π§ β€ π) β π§ β€ π₯)))) |
19 | 7, 18 | sylbid 239 |
. 2
β’ (π β (β¨π, πβ© β dom β§ β β!π₯ β π΅ ((π₯ β€ π β§ π₯ β€ π) β§ βπ§ β π΅ ((π§ β€ π β§ π§ β€ π) β π§ β€ π₯)))) |
20 | 1, 19 | mpd 15 |
1
β’ (π β β!π₯ β π΅ ((π₯ β€ π β§ π₯ β€ π) β§ βπ§ β π΅ ((π§ β€ π β§ π§ β€ π) β π§ β€ π₯))) |