![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meeteu | Structured version Visualization version GIF version |
Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
meetval2.l | ⊢ ≤ = (le‘𝐾) |
meetval2.m | ⊢ ∧ = (meet‘𝐾) |
meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
meetlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
Ref | Expression |
---|---|
meeteu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetlem.e | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
2 | eqid 2725 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | meetval2.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | meetval2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
5 | meetval2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | meetval2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 2, 3, 4, 5, 6 | meetdef 18385 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾))) |
8 | meetval2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
9 | meetval2.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
10 | biid 260 | . . . . . 6 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
11 | 4 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → 𝐾 ∈ 𝑉) |
12 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → {𝑋, 𝑌} ∈ dom (glb‘𝐾)) | |
13 | 8, 9, 2, 10, 11, 12 | glbeu 18363 | . . . . 5 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
14 | 13 | ex 411 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
15 | 8, 9, 3, 4, 5, 6 | meetval2lem 18389 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
16 | 5, 6, 15 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
17 | 16 | reubidv 3381 | . . . 4 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
18 | 14, 17 | sylibd 238 | . . 3 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
19 | 7, 18 | sylbid 239 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃!wreu 3361 {cpr 4632 〈cop 4636 class class class wbr 5149 dom cdm 5678 ‘cfv 6549 Basecbs 17183 lecple 17243 glbcglb 18305 meetcmee 18307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-oprab 7423 df-glb 18342 df-meet 18344 |
This theorem is referenced by: meetlem 18392 |
Copyright terms: Public domain | W3C validator |