MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meeteu Structured version   Visualization version   GIF version

Theorem meeteu 17634
Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
meetlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meeteu (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem meeteu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meetlem.e . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
2 eqid 2824 . . . 4 (glb‘𝐾) = (glb‘𝐾)
3 meetval2.m . . . 4 = (meet‘𝐾)
4 meetval2.k . . . 4 (𝜑𝐾𝑉)
5 meetval2.x . . . 4 (𝜑𝑋𝐵)
6 meetval2.y . . . 4 (𝜑𝑌𝐵)
72, 3, 4, 5, 6meetdef 17628 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾)))
8 meetval2.b . . . . . 6 𝐵 = (Base‘𝐾)
9 meetval2.l . . . . . 6 = (le‘𝐾)
10 biid 264 . . . . . 6 ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)))
114adantr 484 . . . . . 6 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → 𝐾𝑉)
12 simpr 488 . . . . . 6 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → {𝑋, 𝑌} ∈ dom (glb‘𝐾))
138, 9, 2, 10, 11, 12glbeu 17606 . . . . 5 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → ∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)))
1413ex 416 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥))))
158, 9, 3, 4, 5, 6meetval2lem 17632 . . . . . 6 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
165, 6, 15syl2anc 587 . . . . 5 (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1716reubidv 3380 . . . 4 (𝜑 → (∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1814, 17sylibd 242 . . 3 (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
197, 18sylbid 243 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
201, 19mpd 15 1 (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  ∃!wreu 3135  {cpr 4552  cop 4556   class class class wbr 5052  dom cdm 5542  cfv 6343  Basecbs 16483  lecple 16572  glbcglb 17553  meetcmee 17555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-oprab 7153  df-glb 17585  df-meet 17587
This theorem is referenced by:  meetlem  17635
  Copyright terms: Public domain W3C validator