MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meeteu Structured version   Visualization version   GIF version

Theorem meeteu 18112
Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetval2.b 𝐵 = (Base‘𝐾)
meetval2.l = (le‘𝐾)
meetval2.m = (meet‘𝐾)
meetval2.k (𝜑𝐾𝑉)
meetval2.x (𝜑𝑋𝐵)
meetval2.y (𝜑𝑌𝐵)
meetlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meeteu (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem meeteu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meetlem.e . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
2 eqid 2740 . . . 4 (glb‘𝐾) = (glb‘𝐾)
3 meetval2.m . . . 4 = (meet‘𝐾)
4 meetval2.k . . . 4 (𝜑𝐾𝑉)
5 meetval2.x . . . 4 (𝜑𝑋𝐵)
6 meetval2.y . . . 4 (𝜑𝑌𝐵)
72, 3, 4, 5, 6meetdef 18106 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾)))
8 meetval2.b . . . . . 6 𝐵 = (Base‘𝐾)
9 meetval2.l . . . . . 6 = (le‘𝐾)
10 biid 260 . . . . . 6 ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)))
114adantr 481 . . . . . 6 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → 𝐾𝑉)
12 simpr 485 . . . . . 6 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → {𝑋, 𝑌} ∈ dom (glb‘𝐾))
138, 9, 2, 10, 11, 12glbeu 18084 . . . . 5 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → ∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)))
1413ex 413 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥))))
158, 9, 3, 4, 5, 6meetval2lem 18110 . . . . . 6 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
165, 6, 15syl2anc 584 . . . . 5 (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1716reubidv 3322 . . . 4 (𝜑 → (∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
1814, 17sylibd 238 . . 3 (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
197, 18sylbid 239 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥))))
201, 19mpd 15 1 (𝜑 → ∃!𝑥𝐵 ((𝑥 𝑋𝑥 𝑌) ∧ ∀𝑧𝐵 ((𝑧 𝑋𝑧 𝑌) → 𝑧 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  ∃!wreu 3068  {cpr 4569  cop 4573   class class class wbr 5079  dom cdm 5590  cfv 6432  Basecbs 16910  lecple 16967  glbcglb 18026  meetcmee 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-oprab 7275  df-glb 18063  df-meet 18065
This theorem is referenced by:  meetlem  18113
  Copyright terms: Public domain W3C validator