| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meeteu | Structured version Visualization version GIF version | ||
| Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetval2.l | ⊢ ≤ = (le‘𝐾) |
| meetval2.m | ⊢ ∧ = (meet‘𝐾) |
| meetval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| meetlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| Ref | Expression |
|---|---|
| meeteu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetlem.e | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
| 2 | eqid 2735 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | meetval2.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | meetval2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | meetval2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | meetval2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 2, 3, 4, 5, 6 | meetdef 18400 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾))) |
| 8 | meetval2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | meetval2.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 10 | biid 261 | . . . . . 6 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 11 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → 𝐾 ∈ 𝑉) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → {𝑋, 𝑌} ∈ dom (glb‘𝐾)) | |
| 13 | 8, 9, 2, 10, 11, 12 | glbeu 18378 | . . . . 5 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (glb‘𝐾)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 15 | 8, 9, 3, 4, 5, 6 | meetval2lem 18404 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 16 | 5, 6, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 17 | 16 | reubidv 3377 | . . . 4 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 18 | 14, 17 | sylibd 239 | . . 3 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (glb‘𝐾) → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 19 | 7, 18 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) |
| 20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃!wreu 3357 {cpr 4603 〈cop 4607 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 Basecbs 17228 lecple 17278 glbcglb 18322 meetcmee 18324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-oprab 7409 df-glb 18357 df-meet 18359 |
| This theorem is referenced by: meetlem 18407 |
| Copyright terms: Public domain | W3C validator |